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ABSTRACT. Using the so called open anaylsis, Ludomir Newelski proved that type-
definable Lascar strong types over real parameters have finite diameters in 2003. Later
in 2008, Rodrigo Pelaez proved the same result in a more direct way, using the notion
of c-free and weakly c-free extensions over a complete type, which were also introduced
by Newelski. Recall that a hyperimaginary is an equivalence class of an (-type-definable
equivalence relation. We will extend the result of Pelaez to the context of hyperimagi-
naries, i.e. type-definable Lascar strong types over a hyperimaginary always have finite
diameters.

Fix a complete theory T" with a language £ and a monster model M of T'. Let E be
an (-type definable equivalence relation, a a real (possibly infinite) tuple, and e = a/E
a hyperimaginary. Assume that there is a partial type m(x) over ab such that by = 7(x)
iff by =L b, i.e. the Lascar strong type of b over e is type-definable. We will show that
there is a natural number n;, < w such that for all by having the same Lascar strong type
of b over e, the diameter(or Lascar distance) between b and by over e is at most ny, i.e.
de (b, by) < ny.

The same result over an empty(or a set of real) parameter(s) is established in [4]. Many
concepts and arguments will be from [4] but some critical modifications and new concepts
will also be introduced to handle the situations over a hyperimaginary. We begin with
the space of complete types over a hyperimaginary e.

Definition 1. (1) Say a partial type p(x) over a is a complete type over e if there

is ¢ such that for any ¢(x) € L(a), (if f(c) | ¢(x) for all f € Aut.(M), then
¢ € p). Denote this p(z) by tp,(c/e), and call “the” complete type of ¢ over e
(with representation a). We may omit = and write tp(c/e) if the variable is clear
from the context.

(2) S.(e) = {p(x) : p(x) is a complete type over e} is the set of all complete types
over a hyperimaginary e in the variable x. Likewise, we may omit x.

(3) For p(z) € L(a), denote [p(x)]e = {p(z) € S.(e) : p(x) € p(x)}. Define likewise
for a partial type ®(z) over a.

(4) For ¢(x) € L(a), denote [p(z)]" = {p(z) € S.(e) : p is consistent with p}.

Define likewise for a partial type ®(z) over a.

Remark 2. (1) The above definition of a complete type over a hyperimaginary can
replace the old version for it : Recall that Jy(E(a,y) A tp,,(ca)) would be a
complete type of ¢ over e in the old fashion, which is a subset of p(x), and their
solution sets coincide.

This is a note submitted for the proceedings of the conference: RIMS Model Theory Workshop 2020,
December 2020, where the author gave a talk on the same subject but approached in the different way.
The author expresses apology for any inconveniences.
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(2) We say p(x) = tp(c/e) € S(e) “the” complete type of ¢ over e since it is unique
: The parameters are restricted to a and tp(c/e) is the maximal set of formulas
@(x) over a such that {f(c): f € Aute(M)} C p(M).

(3) p(x) € [p(x)]e iff p(z) is inconsistent with —p(x) iff p(z) & [—e(x)]™, so S.(e) \
[¢(x)]e is NOT the same as [-¢(z)]e in general.

Lemma 3. (1) {[p(@)]e : p(x) € L(a)} forms a basis of S.(e).
(2) Si(e) is Hausdorff and compact.

Proof. (1) [z = ] = Su(e) and [p(@)]e N [0(2)]e = [p(e) A p(o)e.

(2) If p # q € S.(e), then p A ¢ is inconsistent, so by compactness, there is ¢(x) €
and ¢(z) € g such that p(z) A/(z) = 0. Thenp € [gle, g € [¢]. and [pleN[]e =
proving that S, (e) is Hausdorff.

To show compactness, suppose there is an open cover {[¢;(x)]e : ¢ € I} without any
finite subcover. Pick any finite subset, say {¢;,, - , i, }. Then by supposition,
there is p(z) € Si(e) such that p(x) ¢ [pi]e U - U [pi]e- Then by Remark
2(3), p(x) is consistent with —y;, for each [ =0,--- , k. So by compactness, there
is q(x) € S,(e) consistent with —; for each i € I(since Jwicr(N;c; ~pi(xi) A
Nijer T =e x;) is finitely consistent). Then by Remark 2(3) again, this ¢(x) ¢

p
0,

U7E[[ i]Je = S:(e), which is impossible.
U
Let 7(z) be a partial type over ab such that by = 7 iff b =L by.
Definition 4. (1) U € M (not necessarily small) is called c-free over 7 if there is

n < w such that fo,--- fo-1 € Aute(M) such that 7(M) C U,_, fi(U) and
fi(mr(M)) = w(M) for every i < n.

(2) p(z) € LIM) is c-free over 7 if (M) is c-free over .

(3) A (partial) type ¢(x) is c-free over = if for any ¢(x) such that ¢(z) - ¢(z), ¢(x)
is c-free over .

Definition 5. U C M is weakly c-free over 7 if there is V' C M such that V' is not c-free
over m but UV is c-free over m. Define for p(z) € L(M) and a partial type ¢(x) to be
weakly c-free over 7 in the same manner as above.

Remark 6. If U C V and U is (weakly) c-free over m, then V' is (weakly) c-free over .
Definition 7. Define F, : S,(a) — S.(e), F,(tp,(c/a)) = tp,(c/e).

Remark 8. F, is possibly NOT continuous since F, !([¢(z)]e) can be a proper subset of

[o(z)] € Sp(a) : Even if p(z) ¢ [¢(z)]e, it may happen that F, '(p) N [p(x)] # O since
there can be ¢ E p(x) such that there is some f € Aute(M), f(c) ¥ ¢(z).

Lemma 9. For any (partial) type ®(x) over a, denote [®(x)] = {p(x) € S(a) : ®(x) C
p(x)}. Then F,([®(x)]) = {q € S(e) : q is consistent with ®} and F, is a closed map.

Proof. Let ®(z) be a partial type over a. Then
Fo([2(x)]) = Fe({p € S(a) : p(M) S (M)}
=F,({p € S(a) :V(I)ckEp, cE D}
={F.(p) € S(e) :¥Y(I)cEp, cE D}
= {q € S(e) : Ic F ¢ such that c F ¢}
= {q € S(e) : ¢ is consistent with ®}.
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By compactness, ¢ € S(e) is consistent with ® iff ¢ is consistent with every finite subset @
of ®. Thus F,([®(x)]) =) @sece [ Po)s” where A @ is the conjunction of all formulas
@ : fini

: finite

in @, which is a single formula in £(a). Note that by Remark 2(3), each [A ®o)s”" is a
basic closed set in S(e), thus F,([®(z)]) =) @,ca [/ Po]S" is closed. O
g : finite

Definition 10. (1) P={q(z,y) € Syy(e) : g(x,y) Um(z) Un(y) is consistent}.
(2) For ckEm, P, .= {q(z,y) € P:q(c,y) is weakly c-free over 7}.

So far, no assumption on 7(x) is used, i.e. 7(x) would be any partial type having some
parameters. Now we start exploiting the fact that 7(z) type-defines the Lascar strong
type of b over e.

Lemma 11. (1) For any p(z,y) = tp(biba/e) € P, by =L b,.

(2) P =[m(x)Um(y)|c" is closed in Syy(e).

(3) Define Ay o(z,y) = {p(z,y) € L(a) : ¢(c,y) is not weakly c-free over w}. Then
P,.=PnN ﬂtpeAW [—p(x, y)]&™. In particular, P, is closed in Syy(e).

(4) There is a partial type Q. (z,y) over a such that p € P, . iff for all(some) d E p,
dE @y Thus Py = [Pyc(r,9)]e = [Pu.c(x, y)]<".

Proof. (1) Say bibs = tp(biba/€) Am(x) Am(y). Then bf =L b =L b5 and f(bibs) = biby
for some f € Aute(M), hence by = f(b%) =L f(b3) = by.

(2) By Lemma 9, P = [r(x) Un(y)|S" = Fypy([r(z) Un(y)]) is closed.

(3) Suppose there is p(z,y) € (,ea, . [7@(@, y)]e™ but p(z,y) ¢ Puc. Then p(c,y) is
not weakly c-free over , so there is (y) € L(M) such that 1(y) is not weakly
c-free over m and p(c,y) F ¥ (y). By compactness and Remark 6, there is ¢(c,y) €
p(c, y) not weakly c-free over w. But then p(x,y) € Ay (z,v), so ~¢(x, y) must be
consistent with p(z, y), a contradiction since ¢(z,y) € p(z,y). Conversely, suppose
there is p(z,y) € Py but p(z,y) ¢ (yea, [T0(z,y)]e". Then there is p(z,y) €
Ay (7, y) such that —¢(z,y) is inconsistent with p(z,y), hence p(z,vy) € [p(z,y)]e
by Remark 2(3). But then ¢(c, y) is not weakly c-free over m and p(c,y) - (¢, ),
a contradiction to p(x,y) € P, .. Now P, is clearly closed by Remark 2(3).

(4) tp(blbg/e) € Pw,c iff
tp(b1ba/e) is consistent with —)(z, y) for any ¥ (z, y) such that ¢ (c, y) is not weakly
c-free over 7 (by (3)) iff
bibs B Ayea, . Fow(zy =e zw A (2,w)), say Pyc(z,y). Notice that this
D, (z,y) is e-invariant, so tp(b1bs/e) is consistent with @, .(x,y) iff ®,.(x,y) C
tp(blbg/e)

0

Proposition 12. Let ) # S C P, .(x,y) where S = [¥(z,y)]e for some (partial) type ¥
such that [V (z,y)]e = [Y(x,y)]™. Then there are cy,--- , ¢, E m such that for any by E ,
there is d E m such that

(1) tp(bod/e) € S.
(2) tp(cid/e) € S for some 1 <i < k.

Proof. We start with a claim.
Claim 1. V(c,y) is weakly c-free over .

Proof of Claim 1. Suppose not, so there is ¢'(c,y) such that §'(c,y) is not weakly c-free
over m and ¥(c,y) F & (c,y). Then by compactness and Remark 6, there is d(c,y) €
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ANY(c,y) = {01 A~ ANy, = W € U(c,y),l € w}, which is not weakly c-free over .
By Lemma 11(3), every element of P, . must be consistent with —d6(z,y), i.e. P,. C

[=6(z, y)]". But we have [U(z, y)|5™ = § C P, and [U(z, y)] N[~d(z, y)|< = O (If
not empty, say p(x,y) € S(e) witness it, then p(M) C \I/(./\/l) and p(M)N=0(M) # 0, a
contradiction), so every p(z,y) € P, . is not an element of S, a contradiction toS#£0. O

Using Claim 1, say V' C M is not c-free over 7 but 7(M) € UL, g:(¥ (e, M) U V)
where g; € Aute(M) and g;(7(M)) = 7(M) for each 1 <i < k.

Claim 2. For each by = 7, there is d € W(by, M) such that d € J*_, ¥(gi(c, M)).

Proof of Claim 2. Suppose not, so that there is by £ m such that for every d € W (by, M),
d ¢ Uf’ZI\II(gi(QM)). Notice that d F 7w : tp(bpd/e) € P and by F m, so there is
bed* E tp(bod/e) Am(z) Am(y). Then there is f € Aute(M) such that f(bjd*) = bod, and
this f also fixes b/ =L since b =L by =L b. Thus d = f(d*) E w. So for all d € ¥(by, M),
d € (M) C Ui, 6:(¥(e, M)UV), hence d € Ui, g:(¥ (e, M) UV)\ U, ¥(gi(e, M) €

UL, gi((T(e, M) U V) \ (e, M)). Since by and ¢ realizes 7, there is gpy € Auto(M)
such that ggi1(c) = by and gg1(m(M)) = w(M). Also, since ggi1(¥(c, M) U V) =
(g1 (2 (e, M) U V) \ W (by, M)) U W (by, M) and W(bo, M) € Ui, gi((¥(e; M) U V) \
W(e, M), g (¥ (e, MYUV) © U (93 (W (e, MYUV)\ W (¢, M)). Since g (¥ (e, M)UV)
is c-free over T, UfJ’ll(gl( (e, M)UV)\ ¥(c, M)) is also c-free over 7, hence (¥ (c, M) U
V)\ ¥(c, M) CV is c-free over w, a contradiction. O

Now by Claim 2, g;(c),- -, gr(c) satisfies : For any b F m, there is d € 7 such that
tp(bd/e) € S(= [¥(z y)](cm) and tp(c;d/e) € S for some 1 < ¢ < k, completing the
proof.

Ll

Let T'(z, y) be a partial type over a such that byb; E I'(x,y) iff there is an e-indiscernible
sequence beginning with by, b;.

Definition 13. Say the diameter(or Lascar distance) between by and b, is less than equal
to n where 1 < n < w, if

biby F Jy1 -y (D, 910) AT (Y1, 92) A= AT (Yn-1,9))
and denote it by de (b1, b1) < n. If b1by E I'(x,y), then say de(by,bs) < 1.
Theorem 14. There is n, € w such that if by E 7(x), then de(b, by) < ny,.
Proof. By Lemma 11(1), P = U, ,,¢,,(P N [de(7,y) < nle), thus

Pyc=PNPy.= |J (PN[de(z.y) <nlen Pu)

1<new

= U (Pw,c N [de(.’lt,y) < n]e_

1<n€ew

Note that [de(z,y) < nle = [de(r,y) < n]&" for any 1 < n < w : ‘de(r,y) < n’is
e-invariant, so its solution set is a union of Aut.(M)-orbits. Thus by Lemma 11(4),

Pw,c N [de(ZE, y) < 1]260") = [(I)w,c(ZC7 y)]gcon) N [de(;p7 y) < 1]((20077,)
= [(I)w,c(ﬂf; y) A (de(l‘7 y) < 1)]20071).



DIAMETER OF A TYPE-DEFINABLE LASCAR STRONG TYPE OVER A HYPERIMAGINARY 5
Now Proposition 12 can be applied with S = [®,(z,9) A (de(z,y) < 1)]26077’), so that
there are cq, - - - ¢ F 7 such that for any by F 7, there are d, dy F m such that

(1) tp(bd/e),tp(bodo/e) € S

(2) tp(cx.d/e), tp(cr,do/e) € S for some 1 < k,, ko < k.

Let M =min{n € w: {tp(cic;/e) : 1 <,j <k} C [de(x,y) < nle}. Then
de(b,by) < de(b,d) + de(d, cg,) + de(ck, s Cry) + de(Cry, do) + de(do, bo)
<14+1+M+14+1=4+ M.

g

Corollary 15. Type-definable Lascar strong type over a hyperimaginary has finite diam-
eter.
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