DIAMETER OF A TYPE-DEFINABLE LASCAR STRONG TYPE OVER A HYPERIMAGINARY

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

ABSTRACT. Using the so called open analysis, Ludomir Newelski proved that type-definable Lascar strong types over real parameters have finite diameters in 2003. Later in 2008, Rodrigo Pelaez proved the same result in a more direct way, using the notion of c-free and weakly c-free extensions over a complete type, which were also introduced by Newelski. Recall that a hyperimaginary is an equivalence class of an \emptyset -type-definable equivalence relation. We will extend the result of Pelaez to the context of hyperimaginaries, i.e. type-definable Lascar strong types over a hyperimaginary always have finite diameters.

Fix a complete theory T with a language \mathcal{L} and a monster model \mathcal{M} of T. Let E be an \emptyset -type definable equivalence relation, a a real (possibly infinite) tuple, and $\mathbf{e} = a/E$ a hyperimaginary. Assume that there is a partial type $\pi(x)$ over ab such that $b_0 \models \pi(x)$ iff $b_0 \equiv_{\mathbf{e}}^{\mathbf{L}} b$, i.e. the Lascar strong type of b over \mathbf{e} is type-definable. We will show that there is a natural number $n_b < \omega$ such that for all b_0 having the same Lascar strong type of b over \mathbf{e} , the diameter (or Lascar distance) between b and b_0 over \mathbf{e} is at most n_b , i.e. $d_{\mathbf{e}}(b,b_0) \leq n_b$.

The same result over an empty(or a set of real) parameter(s) is established in [4]. Many concepts and arguments will be from [4] but some critical modifications and new concepts will also be introduced to handle the situations over a hyperimaginary. We begin with the space of complete types over a hyperimaginary e.

- **Definition 1.** (1) Say a partial type p(x) over a is a complete type over e if there is c such that for any $\varphi(x) \in \mathcal{L}(a)$, (if $f(c) \models \varphi(x)$ for all $f \in \operatorname{Aut}_{e}(\mathcal{M})$, then $\varphi \in p$). Denote this p(x) by $\operatorname{tp}_{x}(c/e)$, and call "the" complete type of c over e (with representation e). We may omit e and write $\operatorname{tp}(c/e)$ if the variable is clear from the context.
 - (2) $S_x(\mathbf{e}) = \{p(x) : p(x) \text{ is a complete type over } \mathbf{e}\}$ is the set of all complete types over a hyperimaginary \mathbf{e} in the variable x. Likewise, we may omit x.
 - (3) For $\varphi(x) \in \mathcal{L}(a)$, denote $[\varphi(x)]_{e} = \{p(x) \in S_{x}(e) : \varphi(x) \in p(x)\}$. Define likewise for a partial type $\Phi(x)$ over a.
 - (4) For $\varphi(x) \in \mathcal{L}(a)$, denote $[\varphi(x)]_{\boldsymbol{e}}^{con} = \{p(x) \in S_x(\boldsymbol{e}) : p \text{ is consistent with } \varphi\}$. Define likewise for a partial type $\Phi(x)$ over a.
- **Remark 2.** (1) The above definition of a complete type over a hyperimaginary can replace the old version for it: Recall that $\exists y(E(a,y) \land \operatorname{tp}_{xy}(ca))$ would be a complete type of c over e in the old fashion, which is a subset of p(x), and their solution sets coincide.

This is a note submitted for the proceedings of the conference: RIMS Model Theory Workshop 2020, December 2020, where the author gave a talk on the same subject but approached in the different way. The author expresses apology for any inconveniences.

- (2) We say $p(x) = \operatorname{tp}(c/e) \in S(e)$ "the" complete type of c over e since it is unique : The parameters are restricted to a and $\operatorname{tp}(c/e)$ is the maximal set of formulas $\varphi(x)$ over a such that $\{f(c): f \in \operatorname{Aut}_{e}(\mathcal{M})\} \subseteq \varphi(\mathcal{M})$.
- (3) $p(x) \in [\varphi(x)]_{\mathbf{e}}$ iff p(x) is inconsistent with $\neg \varphi(x)$ iff $p(x) \notin [\neg \varphi(x)]_{\mathbf{e}}^{con}$, so $S_x(\mathbf{e}) \setminus [\varphi(x)]_{\mathbf{e}}$ is NOT the same as $[\neg \varphi(x)]_{\mathbf{e}}$ in general.

Lemma 3. (1) $\{ [\varphi(x)]_{e} : \varphi(x) \in \mathcal{L}(a) \}$ forms a basis of $S_{x}(e)$.

(2) $S_x(e)$ is Hausdorff and compact.

Proof. (1) $[x = x]_e = S_x(e)$ and $[\varphi(x)]_e \cap [\psi(x)]_e = [\varphi(x) \wedge \psi(x)]_e$.

(2) If $p \neq q \in S_x(e)$, then $p \wedge q$ is inconsistent, so by compactness, there is $\varphi(x) \in p$ and $\psi(x) \in q$ such that $\varphi(x) \wedge \psi(x) \equiv \emptyset$. Then $p \in [\varphi]_e$, $q \in [\psi]_e$ and $[\varphi]_e \cap [\psi]_e = \emptyset$, proving that $S_x(e)$ is Hausdorff.

To show compactness, suppose there is an open cover $\{[\varphi_i(x)]_{\boldsymbol{e}}: i \in I\}$ without any finite subcover. Pick any finite subset, say $\{\varphi_{i_0}, \cdots, \varphi_{i_k}\}$. Then by supposition, there is $p(x) \in S_x(\boldsymbol{e})$ such that $p(x) \notin [\varphi_{i_0}]_{\boldsymbol{e}} \cup \cdots \cup [\varphi_{i_k}]_{\boldsymbol{e}}$. Then by Remark 2(3), p(x) is consistent with $\neg \varphi_{i_l}$ for each $l = 0, \cdots, k$. So by compactness, there is $q(x) \in S_x(\boldsymbol{e})$ consistent with $\neg \varphi_i$ for each $i \in I(\text{since } \exists x_{i \in I}(\bigwedge_{i \in I} \neg \varphi_i(x_i) \land \bigwedge_{i,j \in I} x_i \equiv_{\boldsymbol{e}} x_j)$ is finitely consistent). Then by Remark 2(3) again, this $q(x) \notin \bigcup_{i \in I} [\varphi_i]_{\boldsymbol{e}} = S_x(\boldsymbol{e})$, which is impossible.

Let $\pi(x)$ be a partial type over ab such that $b_0 \models \pi$ iff $b \equiv_{e}^{L} b_0$.

Definition 4. (1) $U \subseteq \mathcal{M}$ (not necessarily small) is called c-free over π if there is $n < \omega$ such that $f_0, \dots f_{n-1} \in \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M})$ such that $\pi(\mathcal{M}) \subseteq \bigcup_{i < n} f_i(U)$ and $f_i(\pi(\mathcal{M})) = \pi(\mathcal{M})$ for every i < n.

- (2) $\varphi(x) \in \mathcal{L}(\mathcal{M})$ is c-free over π if $\varphi(\mathcal{M})$ is c-free over π .
- (3) A (partial) type q(x) is c-free over π if for any $\varphi(x)$ such that $q(x) \vdash \varphi(x)$, $\varphi(x)$ is c-free over π .

Definition 5. $U \subseteq \mathcal{M}$ is weakly c-free over π if there is $V \subseteq \mathcal{M}$ such that V is not c-free over π but UV is c-free over π . Define for $\varphi(x) \in \mathcal{L}(\mathcal{M})$ and a partial type q(x) to be weakly c-free over π in the same manner as above.

Remark 6. If $U \subseteq V$ and U is (weakly) c-free over π , then V is (weakly) c-free over π .

Definition 7. Define $F_x: S_x(a) \to S_x(e), F_x(\operatorname{tp}_x(c/a)) = \operatorname{tp}_x(c/e).$

Remark 8. F_x is possibly NOT continuous since $F_x^{-1}([\varphi(x)]_e)$ can be a proper subset of $[\varphi(x)] \subseteq S_x(a)$: Even if $p(x) \notin [\varphi(x)]_e$, it may happen that $F_x^{-1}(p) \cap [\varphi(x)] \neq \emptyset$ since there can be $c \models \varphi(x)$ such that there is some $f \in \operatorname{Aut}_e(\mathcal{M})$, $f(c) \nvDash \varphi(x)$.

Lemma 9. For any (partial) type $\Phi(x)$ over a, denote $[\Phi(x)] = \{p(x) \in S(a) : \Phi(x) \subseteq p(x)\}$. Then $F_x([\Phi(x)]) = \{q \in S(e) : q \text{ is consistent with } \Phi\}$ and F_x is a closed map.

Proof. Let $\Phi(x)$ be a partial type over a. Then

$$F_x([\Phi(x)]) = F_x(\{p \in S(a) : p(\mathcal{M}) \subseteq \Phi(\mathcal{M})\})$$

$$= F_x(\{p \in S(a) : \forall (\exists) c \vDash p, c \vDash \Phi\}\}$$

$$= \{F_x(p) \in S(\mathbf{e}) : \forall (\exists) c \vDash p, c \vDash \Phi\}$$

$$= \{q \in S(\mathbf{e}) : \exists c \vDash q \text{ such that } c \vDash \Phi\}$$

$$= \{q \in S(\mathbf{e}) : q \text{ is consistent with } \Phi\}.$$

By compactness, $q \in S(e)$ is consistent with Φ iff q is consistent with every finite subset Φ_0 of Φ . Thus $F_x([\Phi(x)]) = \bigcap_{\Phi_0 \subseteq \Phi \atop \Phi_0 \text{ : finite}} [\bigwedge \Phi_0]_{\boldsymbol{e}}^{con}$ where $\bigwedge \Phi_0$ is the conjunction of all formulas in Φ_0 , which is a single formula in $\mathcal{L}(a)$. Note that by Remark 2(3), each $[\bigwedge \Phi_0]_{\boldsymbol{e}}^{con}$ is a basic closed set in S(e), thus $F_x([\Phi(x)]) = \bigcap_{\Phi_0 \subseteq \Phi} [\bigwedge_{e \text{ finite}} [\bigwedge_{e} \Phi_0]_e^{con}$ is closed.

(1) $P = \{q(x,y) \in S_{xy}(e) : q(x,y) \cup \pi(x) \cup \pi(y) \text{ is consistent}\}.$ Definition 10. (2) For $c \models \pi$, $P_{w,c} = \{q(x,y) \in P : q(c,y) \text{ is weakly c-free over } \pi\}$.

So far, no assumption on $\pi(x)$ is used, i.e. $\pi(x)$ would be any partial type having some parameters. Now we start exploiting the fact that $\pi(x)$ type-defines the Lascar strong type of b over e.

(1) For any $p(x,y) = \operatorname{tp}(b_1 b_2 / e) \in P$, $b_1 \equiv_{e}^{L} b_2$. Lemma 11.

- (2) $P = [\pi(x) \cup \pi(y)]_{\mathbf{e}}^{con}$ is closed in $S_{xy}(\mathbf{e})$.
- (3) Define $\Delta_{w,c}(x,y) = \{\varphi(x,y) \in \mathcal{L}(a) : \varphi(c,y) \text{ is not weakly c-free over } \pi\}$. Then $P_{w,c} = P \cap \bigcap_{\varphi \in \Delta_{w,c}} [\neg \varphi(x,y)]_{\mathbf{e}}^{con}$. In particular, $P_{w,c}$ is closed in $S_{xy}(\mathbf{e})$.
- (4) There is a partial type $\Phi_{w,c}(x,y)$ over a such that $p \in P_{w,c}$ iff for all(some) $d \models p$, $d \models \Phi_{w,c}$. Thus $P_{w,c} = [\Phi_{w,c}(x,y)]_{e} = [\Phi_{w,c}(x,y)]_{e}^{con}$.

(1) Say $b_1^*b_2^* \models \text{tp}(b_1b_2/e) \land \pi(x) \land \pi(y)$. Then $b_1^* \equiv_e^L b \equiv_e^L b_2^*$ and $f(b_1^*b_2^*) = b_1b_2$ for some $f \in \text{Aut}_e(\mathcal{M})$, hence $b_1 = f(b_1^*) \equiv_e^L f(b_2^*) = b_2$. Proof.

- (2) By Lemma 9, $P = [\pi(x) \cup \pi(y)]_{e}^{con} = F_{xy}([\pi(x) \cup \pi(y)])$ is closed. (3) Suppose there is $p(x,y) \in \bigcap_{\varphi \in \Delta_{w,c}} [\neg \varphi(x,y)]_{e}^{con}$ but $p(x,y) \notin P_{w,c}$. Then p(c,y) is not weakly c-free over π , so there is $\psi(y) \in \mathcal{L}(\mathcal{M})$ such that $\psi(y)$ is not weakly c-free over π and $p(c,y) \vdash \psi(y)$. By compactness and Remark 6, there is $\varphi(c,y) \in$ p(c,y) not weakly c-free over π . But then $\varphi(x,y) \in \Delta_{w,c}(x,y)$, so $\neg \varphi(x,y)$ must be consistent with p(x, y), a contradiction since $\varphi(x, y) \in p(x, y)$. Conversely, suppose there is $p(x,y) \in P_{w,c}$ but $p(x,y) \notin \bigcap_{\varphi \in \Delta_{w,c}} [\neg \varphi(x,y)]_{e}^{con}$. Then there is $\varphi(x,y) \in P_{w,c}$ $\Delta_{w.c}(x,y)$ such that $\neg \varphi(x,y)$ is inconsistent with p(x,y), hence $p(x,y) \in [\varphi(x,y)]_e$ by Remark 2(3). But then $\varphi(c,y)$ is not weakly c-free over π and $p(c,y) \vdash \varphi(c,y)$, a contradiction to $p(x,y) \in P_{w,c}$. Now $P_{w,c}$ is clearly closed by Remark 2(3).
- (4) $\operatorname{tp}(b_1b_2/\boldsymbol{e}) \in P_{w,c}$ iff $\operatorname{tp}(b_1b_2/e)$ is consistent with $\neg \psi(x,y)$ for any $\psi(x,y)$ such that $\psi(c,y)$ is not weakly c-free over π (by (3)) iff $b_1b_2 \models \bigwedge_{\psi \in \Delta_{w,c}} \exists zw(xy \equiv_{\boldsymbol{e}} zw \land \neg \psi(z,w)), \text{ say } \Phi_{w,c}(x,y).$ Notice that this $\Phi_{w,c}(x,y)$ is \boldsymbol{e} -invariant, so $\operatorname{tp}(b_1b_2/\boldsymbol{e})$ is consistent with $\Phi_{w,c}(x,y)$ iff $\Phi_{w,c}(x,y) \subseteq$ $\operatorname{tp}(b_1b_2/\boldsymbol{e}).$

Proposition 12. Let $\emptyset \neq S \subseteq P_{w,c}(x,y)$ where $S = [\Psi(x,y)]_e$ for some (partial) type Ψ such that $[\Psi(x,y)]_{\mathbf{e}} = [\Psi(x,y)]_{\mathbf{e}}^{con}$. Then there are $c_1, \dots, c_k \vDash \pi$ such that for any $b_0 \vDash \pi$, there is $d \vDash \pi$ such that

- (1) $\operatorname{tp}(b_0 d/\boldsymbol{e}) \in S$.
- (2) $\operatorname{tp}(c_i d/\mathbf{e}) \in S \text{ for some } 1 \leq i \leq k.$

Proof. We start with a claim.

Claim 1. $\Psi(c,y)$ is weakly c-free over π .

Proof of Claim 1. Suppose not, so there is $\delta'(c,y)$ such that $\delta'(c,y)$ is not weakly c-free over π and $\Psi(c,y) \vdash \delta'(c,y)$. Then by compactness and Remark 6, there is $\delta(c,y) \in$

 $\bigwedge \Psi(c,y) = \{\psi_1 \wedge \cdots \wedge \psi_n : \psi_l \in \Psi(c,y), l \in \omega\}, \text{ which is not weakly c-free over } \pi.$ By Lemma 11(3), every element of $P_{w,c}$ must be consistent with $\neg \delta(x,y)$, i.e. $P_{w,c} \subseteq [\neg \delta(x,y)]_{e}^{con}$. But we have $[\Psi(x,y)]_{e}^{(con)} = S \subseteq P_{w,c}$ and $[\Psi(x,y)]_{e}^{(con)} \cap [\neg \delta(x,y)]_{e}^{con} = \emptyset$ (If not empty, say $p(x,y) \in S(e)$ witness it, then $p(\mathcal{M}) \subseteq \Psi(\mathcal{M})$ and $p(\mathcal{M}) \cap \neg \delta(\mathcal{M}) \neq \emptyset$, a contradiction), so every $p(x,y) \in P_{w,c}$ is not an element of S, a contradiction to $S \neq \emptyset$. \square

Using Claim 1, say $V \subseteq \mathcal{M}$ is not c-free over π but $\pi(\mathcal{M}) \subseteq \bigcup_{i=1}^k g_i(\Psi(c, \mathcal{M}) \cup V)$ where $g_i \in \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M})$ and $g_i(\pi(\mathcal{M})) = \pi(\mathcal{M})$ for each $1 \leq i \leq k$.

Claim 2. For each $b_0 \models \pi$, there is $d \in \Psi(b_0, \mathcal{M})$ such that $d \in \bigcup_{i=1}^k \Psi(g_i(c, \mathcal{M}))$.

Proof of Claim 2. Suppose not, so that there is $b_0 \vDash \pi$ such that for every $d \in \Psi(b_0, \mathcal{M})$, $d \notin \bigcup_{i=1}^k \Psi(g_i(c, \mathcal{M}))$. Notice that $d \vDash \pi : \operatorname{tp}(b_0d/e) \in P$ and $b_0 \vDash \pi$, so there is $b_0^*d^* \vDash \operatorname{tp}(b_0d/e) \wedge \pi(x) \wedge \pi(y)$. Then there is $f \in \operatorname{Aut}_e(\mathcal{M})$ such that $f(b_0^*d^*) = b_0d$, and this f also fixes $b \not \equiv_e^L \operatorname{since} b \equiv_e^L b_0 \equiv_e^L b_0^*$. Thus $d = f(d^*) \vDash \pi$. So for all $d \in \Psi(b_0, \mathcal{M})$, $d \in \pi(\mathcal{M}) \subseteq \bigcup_{i=1}^k g_i(\Psi(c, \mathcal{M}) \cup V)$, hence $d \in \bigcup_{i=1}^k g_i(\Psi(c, \mathcal{M}) \cup V) \setminus \bigcup_{i=1}^k \Psi(g_i(c, \mathcal{M})) \subseteq \bigcup_{i=1}^k g_i((\Psi(c, \mathcal{M}) \cup V) \setminus \Psi(c, \mathcal{M}))$. Since b_0 and c realizes π , there is $g_{k+1} \in \operatorname{Aut}_e(\mathcal{M})$ such that $g_{k+1}(c) = b_0$ and $g_{k+1}(\pi(\mathcal{M})) = \pi(\mathcal{M})$. Also, since $g_{k+1}(\Psi(c, \mathcal{M}) \cup V) = (g_{k+1}(\Psi(c, \mathcal{M}) \cup V) \setminus \Psi(b_0, \mathcal{M})) \cup \Psi(b_0, \mathcal{M})$ and $\Psi(b_0, \mathcal{M}) \subseteq \bigcup_{i=1}^k g_i((\Psi(c, \mathcal{M}) \cup V) \setminus \Psi(c, \mathcal{M}))$. Since $g_{k+1}(\Psi(c, \mathcal{M}) \cup V) \setminus \Psi(c, \mathcal{M})$ is c-free over π , $\bigcup_{i=1}^{k+1} (g_i(\Psi(c, \mathcal{M}) \cup V) \setminus \Psi(c, \mathcal{M}))$ is also c-free over π , hence $(\Psi(c, \mathcal{M}) \cup V) \setminus \Psi(c, \mathcal{M}) \subseteq V$ is c-free over π , a contradiction. \square

Now by Claim 2, $g_1(c), \dots, g_k(c)$ satisfies: For any $b \models \pi$, there is $d \in \pi$ such that $\operatorname{tp}(bd/e) \in S(=[\Psi(x,y)]_e^{(con)})$ and $\operatorname{tp}(c_id/e) \in S$ for some $1 \leq i \leq k$, completing the proof.

Let $\Gamma(x,y)$ be a partial type over a such that $b_0b_1 \models \Gamma(x,y)$ iff there is an e-indiscernible sequence beginning with b_0, b_1 .

Definition 13. Say the diameter (or Lascar distance) between b_1 and b_2 is less than equal to n where $1 < n < \omega$, if

$$b_1b_2 \vDash \exists y_1 \cdots y_{n-1}(\Gamma(x, y_1) \land \Gamma(y_1, y_2) \land \cdots \land \Gamma(y_{n-1}, y))$$

and denote it by $d_{\mathbf{e}}(b_1, b_1) \leq n$. If $b_1b_2 \models \Gamma(x, y)$, then say $d_{\mathbf{e}}(b_1, b_2) \leq 1$.

Theorem 14. There is $n_b \in \omega$ such that if $b_0 \models \pi(x)$, then $d_e(b, b_0) \leq n_b$.

Proof. By Lemma 11(1), $P = \bigcup_{1 \le n \in \omega} (P \cap [d_{e}(x, y) \le n]_{e})$, thus

$$P_{w,c} = P \cap P_{w,c} = \bigcup_{1 \le n \in \omega} (P \cap [d_{e}(x,y) \le n]_{e} \cap P_{w,c})$$
$$= \bigcup_{1 \le n \in \omega} (P_{w,c} \cap [d_{e}(x,y) \le n]_{e}.$$

Note that $[d_{e}(x,y) \leq n]_{e} = [d_{e}(x,y) \leq n]_{e}^{con}$ for any $1 \leq n < \omega$: ' $d_{e}(x,y) \leq n$ ' is e-invariant, so its solution set is a union of $\mathrm{Aut}_{e}(\mathcal{M})$ -orbits. Thus by Lemma 11(4),

$$P_{w,c} \cap [d_{e}(x,y) \leq 1]_{e}^{(con)} = [\Phi_{w,c}(x,y)]_{e}^{(con)} \cap [d_{e}(x,y) \leq 1]_{e}^{(con)}$$
$$= [\Phi_{w,c}(x,y) \wedge (d_{e}(x,y) \leq 1)]_{e}^{(con)}.$$

Now Proposition 12 can be applied with $S = [\Phi_{w,c}(x,y) \land (d_{\boldsymbol{e}}(x,y) \leq 1)]_{\boldsymbol{e}}^{(con)}$, so that there are $c_1, \dots c_k \vDash \pi$ such that for any $b_0 \vDash \pi$, there are $d, d_0 \vDash \pi$ such that

- (1) $\operatorname{tp}(bd/e), \operatorname{tp}(b_0d_0/e) \in S$
- (2) $\operatorname{tp}(c_{k_*}d/\mathbf{e}), \operatorname{tp}(c_{k_0}d_0/\mathbf{e}) \in S \text{ for some } 1 \leq k_*, k_0 \leq k.$

Let
$$M = \min\{n \in \omega : \{ \operatorname{tp}(c_i c_j / \mathbf{e}) : 1 \le i, j \le k \} \subseteq [d_{\mathbf{e}}(x, y) \le n]_{\mathbf{e}} \}$$
. Then $d_{\mathbf{e}}(b, b_0) \le d_{\mathbf{e}}(b, d) + d_{\mathbf{e}}(d, c_{k_*}) + d_{\mathbf{e}}(c_{k_*}, c_{k_0}) + d_{\mathbf{e}}(c_{k_0}, d_0) + d_{\mathbf{e}}(d_0, b_0)$ $\le 1 + 1 + M + 1 + 1 = 4 + M.$

Corollary 15. Type-definable Lascar strong type over a hyperimaginary has finite diameter.

References

- [1] D. Lascar and A. Pillay, 'Hyperimaginaries and automorphism groups', *J. of Symbolic Logic* 66 (2001) 127-143.
- [2] B. Kim, 'Simplicity Theory', Oxford University Press (2014).
- [3] M. Ziegler, 'Introduction to the Lascar group', in *Tits buildings and the model theory of groups*, London Math. Lecture Note Series 291, Cambridge Univ. Press (2002) 279-298.
- [4] Rodrigo Pelaez Pelaez, 'About The Lascar Group', Dissertation, University of Barcelona (2008).
- [5] Ludomir Newelski, 'The diameter of a Lascar strong type', Fundamenta Mathematicae 176(2):157-170 (2003).

DEPARTMENT OF MATHEMATICS YONSEI UNIVERSITY 50 YONSEI-RO SEODAEMUN-GU SEOUL 03722 SOUTH KOREA

 $Email\ address: {\tt toxxinx@gmail.com}$