IMAGINARIES, STATIONARITY OF TYPES AND STABILITY

IKUO YONEDA GENERAL EDUCATION, NATIONAL INSTITUTE OF TECHNOLOGY, TOKUYAMA COLLEGE

Abstract. Let T be a rosy theory having weak canonical bases with respect to a strict independence relation \bigcup . Suppose that any type over algebraically closed sets in the real sort is \bigcup -stationary. THEN T is stable, non-forking relation coincides with \bigcup , and geometric elimination of imaginaries implies weak elimination of imaginaries.

1. Notations and well-known facts on stationary types

Let T be an L-theory, and \mathcal{M} be a sufficiently saturated model of T. We work in $\mathcal{M}^{eq} := \{a_E : a_E \text{ is the } E\text{-class of } a, \text{ where } a \text{ is a finite tuple of } M \text{ and } E(x,y) \text{ is } a$ a ϕ -definable equivalence relation with lh(x) = lh(y) = lh(a) }. A, B, C, \cdots denote small subsets of \mathcal{M}^{eq} . a, a', α, \cdots denote finite tuples in \mathcal{M} (i.e. real finite tuples). We write $a \subset_{\omega} \mathcal{M}$. $A \equiv_B A'$ denotes $\operatorname{tp}(A/B) = \operatorname{tp}(A'/B)$ for any $A, A', B \subset \mathcal{M}^{\operatorname{eq}}$. For $i \in \mathcal{M}^{eq}$, we write $i \in acl^{eq}(A)$ if the orbit of i by automorphisms fixing A pointwise is finite, and $i \in dcl^{eq}(A)$ if i is fixed by automorphisms fixing A pointwise. Adler [A] introduces a strict independence relation $* \bigcup_{*} *$ for triplet of small subsets of \mathcal{M}^{eq} satisfying (1)-(9):

- (1) invariance: If $A \downarrow_B C$ and $ABC \equiv A'B'C'$, then $A' \downarrow_{B'} C'$. (2) monotonicity: If $A \downarrow_B C$, $A' \subseteq A$ and $C' \subseteq C$, then $A' \downarrow_B C'$.

- (3) right base monotonicity: If $A \downarrow_B D$ and $B \subseteq C \subseteq D$, then $A \downarrow_C D$. (4) left transitivity: If $B \subseteq C \subseteq D$, $D \downarrow_C A$ and $C \downarrow_B A$, then $D \downarrow_B A$. (5) left normality: $A \downarrow_B C$ implies $AB \downarrow_B C$. (6) extension: If $A \downarrow_B C$ and $C \subseteq D$, then there exists $A'(\equiv_{BC} A)$ such that $A' \bigcup_B D$.
- (7) left finite character: If $a \downarrow_B C$ for any $a \subset_{\omega} A$, then $A \downarrow_B C$.
- (8) local character: For any A there exists a cardinal $\kappa(A)$ such that, for any B there exists $B_0 \subseteq B$ with $|B_0| < \kappa(A)$ and $A \bigcup_{B_0} B$.
- (9) anti-reflexivity: $A \downarrow_B A$ implies $A \subseteq \operatorname{acl}^{eq}(B)$.

T is said to be rosy if there exists a strict independence relation on \mathcal{M}^{eq} . Theorem 1.14 in [A] shows that (1)-(8) imply symmetry: $A \downarrow_B C \Leftrightarrow C \downarrow_B A$.

Fact 1.1. Let T be rosy with a strict independence relation \bot . Then we have $A \downarrow_B \operatorname{acl}^{\operatorname{eq}}(B)$ for any $A, B \subset \mathcal{M}^{\operatorname{eq}}$.

Date: March 30, 2021.

¹⁹⁹¹ Mathematics Subject Classification. 03C45.

Key words and phrases, weak elimination of imaginaries, geometric elimination of imaginaries, stationarity of types, rosy theory, weak canonical bases, stable theory.

Proof. By local character and right base monotonicity, we have $A \downarrow_B B$. By extension, there exists $A' \equiv_B A$ such that $A' \downarrow_B \operatorname{acl}^{\operatorname{eq}}(B)$. By invariance, we have $A \downarrow_B \operatorname{acl}^{\operatorname{eq}}(B)$. \square

An algebraically closed set $C \subset \mathcal{M}^{eq}$ is said to be the \bigcup -weak canonical base of $\operatorname{tp}(a/B)$ if C is the smallest algebraically closed subset of $\operatorname{acl^{eq}}(B)$ with $a \bigcup_C B$. web \bigcup (a/B) denotes the weak \bigcup -weak cononical base of $\operatorname{tp}(a/B)$. We say that a rosy T has \bigcup -weak canonical bases if there exists web \bigcup (a/B) for any $a \subset_{\omega} \mathcal{M}$ and $B \subset \mathcal{M}^{eq}$. If T has \bigcup -weak canonical bases, then $\bigcup = \bigcup^{\mathfrak{p}}$ by Theorem 3.3 in [A]. We say that T has geometric elimination of imaginaries (GEI) if there exists $\alpha \subset_{\omega} \mathcal{M}$ such that $a_E \in \operatorname{acl^{eq}}(\alpha)$ and $\alpha \in \operatorname{acl^{eq}}(a_E)$ for any $a \subset_{\omega} \mathcal{M}$ and any ϕ -definable equivalence relation E(x,y) in T. We say that T has weak elimination of imaginaries (WEI) if T has GEI with $a_E \in \operatorname{dcl^{eq}}(\alpha)$ in the above definition of GEI.

Definition 1.2. Let T be rosy with a strict independence relation \bigcup , and $a \subset_{\omega} \mathcal{M}, A \subset \mathcal{M}^{eq}$. We say $\operatorname{tp}(a/A)$ is \bigcup -stationary if for any $a' \subset_{\omega} \mathcal{M}, B = \operatorname{acl^{eq}}(B) \subset \mathcal{M}^{eq}$ such that $A \subset B$, $a \equiv_A a', a \bigcup_A B$ and $a' \bigcup_A B$, we have $a \equiv_B a'$.

The following is also well-known, which appeared in foot note on pp.20 in [Y2].

Fact 1.3. Let T be any rosy theory with a strict independence relation \bigcup .

- (1) If $\operatorname{tp}(a/A)$ is \bigcup -stationary and $i \in \operatorname{dcl}^{\operatorname{eq}}(a)$, then $\operatorname{tp}(i/A)$ is also \bigcup -stationary.
- (2) If $\operatorname{tp}(i/A)$ is \bigcup -stationary, $i \bigcup_A B$ and $i \in \operatorname{dcl}^{\operatorname{eq}}(B)$, then $i \in \operatorname{dcl}^{\operatorname{eq}}(A)$.

Proof. For (1): Suppose that $i \equiv_A i', i \downarrow_A B$ and $i' \downarrow_A B$. We need to show $i \equiv_B i'$. By $i \in \operatorname{dcl^{eq}}(a)$ and compactness, there exists a ϕ -definable function f such that f(a) = i. We may assume that $a \downarrow_{Ai} B$ by extension, so as $i \downarrow_A B$, we have $a \downarrow_A B$ by left transitivity, left normality and monotonicity. Take a' with $ia \equiv_A i'a'$. Again we may assume $a' \downarrow_{Ai'} B$ by extension, so $a' \downarrow_A B$ follows. As $a \equiv_A a', a \downarrow_A B$ and $a' \downarrow_A B$, by \downarrow -stationarity of $\operatorname{tp}(a/A)$, we have $a \equiv_B a'$. Since i = f(a), i' = f(a'), we see $i \equiv_B i'$, as desired.

For(2): Note that $i \in \operatorname{acl^{eq}}(A)$. Suppose that $i' \equiv_A i$. As $i' \in \operatorname{acl^{eq}}(A)$ and Remark 1.1 and symmetry, $i' \downarrow_A B$ follows. By \downarrow -stationarity of $\operatorname{tp}(i/A)$, we see $i \equiv_B i'$, so i = i' by $i \in \operatorname{dcl^{eq}}(B)$. \square

2. Stability

Remark 2.1. If T has GEI, stationarity of types over algebraically closed sets in the real sort implies stationarity of types over algebraically closed sets in imaginary sorts.

Proof. Take $a \subset_{\omega} M$, $A = \operatorname{acl}^{\operatorname{eq}}(A) \subset \mathcal{M}^{\operatorname{eq}}$ arbitrarily. Suppose that $A \subset B = \operatorname{acl}^{\operatorname{eq}}(B) \subset \mathcal{M}^{\operatorname{eq}}$, $a \equiv_A a', a \downarrow_A B$ and $a' \downarrow_A B$. We need to show $a \equiv_B a'$. By GEI, there exists $A_0 = \operatorname{acl}(A_0)$, $B_0 = \operatorname{acl}(B_0) \subset \mathcal{M}$ such that $\operatorname{acl}^{\operatorname{eq}}(A_0) = A$, $\operatorname{acl}^{\operatorname{eq}}(B_0) = B$. As $A_0 \subseteq A$, we have $a \equiv_{A_0} a'$. By Remark 1.1, we have $a \downarrow_{A_0} \operatorname{acl}^{\operatorname{eq}}(B_0)$, $a' \downarrow_{A_0} \operatorname{acl}^{\operatorname{eq}}(B_0)$. By stationarity over algebraically closed sets in the real sorts, we see $a \equiv_{\operatorname{acl}^{\operatorname{eq}}(B_0) = B} a'$. \square

The following proposition is pointed out by Byunghan Kim at RIMS model theory workshop 2020.

Proposition 2.2. Let T be rosy.

- (1) Suppose that $\operatorname{tp}(a/\operatorname{acl}^{\operatorname{eq}}(A))$ is $\bigcup^{\mathfrak{p}}$ -stationary for any finite real tuple $a \subset_{\omega} \mathcal{M}$ and small $A \subset \mathcal{M}^{\operatorname{eq}}$. Then T is stable and thorn-forking coincides with forking.
- (2) Suppose that $\operatorname{tp}(a/\operatorname{acl}(A))$ is $\bigcup^{\mathfrak{p}}$ -stationary for any finite real tuple $a \subset_{\omega} \mathcal{M}$ and small $A \subset \mathcal{M}$. Then T is stable and thorn-forking coincides with forking.
- (3) Suppose that $\operatorname{tp}(a/\operatorname{bbd}^{\operatorname{heq}}(A))$ is $\bigcup^{\mathfrak{p}}$ -stationary for any finite real tuple $a \subset_{\omega} \mathcal{M}$ and small $A \subset \mathcal{M}^{\operatorname{heq}}$. (i.e. for any $B = \operatorname{bbd}^{\operatorname{heq}}(B) \supset \operatorname{bbd}^{\operatorname{heq}}(A)$, if $a \cup_{\operatorname{bbd}^{\operatorname{heq}}(A)}^{\mathfrak{p}} B, a' \cup_{\operatorname{bbd}^{\operatorname{heq}}(A)}^{\mathfrak{p}} B$ and $a \equiv_{\operatorname{bbd}^{\operatorname{heq}}(A)} a'$ imply $a \equiv_B a'$.) Then T is stable and thorn-forking coincides with forking.

Proof. (1): If $M \models T$, then we have $\operatorname{acl^{eq}}(M) = \operatorname{dcl^{eq}}(M)$. In particular $\operatorname{tp}(a/M) = \operatorname{tp}(a/\operatorname{dcl^{eq}}(M)) = \operatorname{tp}(a/\operatorname{acl^{eq}}(M))$ and $a \downarrow_M^{\mathfrak{p}} \operatorname{acl^{eq}}(M)$ by Fact 1.1. As $\operatorname{tp}(a/\operatorname{acl^{eq}}(M)) = \operatorname{tp}(a/M)$ is $\downarrow^{\mathfrak{p}}$ -stationary, T has the independence theorem over models with respect to thorn-forking. By Theorem 2.7 (2) and Fact 2.4 in [EO], for any finite real tuple a and any small $A \subset \mathcal{M}^{eq}$ there exists $A_0 \subseteq A$ with $|A_0| \leq |T|$ and $a \downarrow_{A_0}^{\mathfrak{p}} A$. (Otherwise there would exist a chain of thorn-foking extension of length $|T|^+$, then $\mathfrak{p}_{\psi,\theta,k}$ -rank drops infinitely many times for a fixed triplet (ψ,θ,k) , so T would not be rosy.) By Kim-Pillay criterion:Theorem 3.3.1 in [K], thorn-forking coincides with forking. As any type of a finite real tuple over a model M is forking-stationary, by Corollary 2.3.17 in [W], it is definable over M. By Theorem 2.15 in [P], we see that T is stable.

- (2): A similar proof of (1) works for (2).
- (3): By Remark and Definiton 4.1.4 (2) in [K], note that $\operatorname{bbd}^{\operatorname{heq}}(M) = \operatorname{dcl}^{\operatorname{heq}}(M)$ for any model M of T. In particular $\operatorname{tp}(a/M) = \operatorname{tp}(a/\operatorname{dcl}^{\operatorname{heq}}(M)) = \operatorname{tp}(a/\operatorname{bbd}^{\operatorname{heq}}(M))$ and $a \downarrow^{\mathfrak{p}}_{M} \operatorname{bbd}^{\operatorname{heq}}(M)$ by the proof of Fact 1.1. Now, a similar proof of (1) works for (3) in T^{heq} . \square

3. GEI AND WEI IN ROSY THEORIES

The author's proof to the following proposition is improved by Anand Pillay as follows.

Proposition 3.1. Let T be a rosy theory having weak canonical bases with respect to a strict independence relation \downarrow . Suppose that any type over algebraically closed set in the real sort is \downarrow -stationary. THEN GEI \Leftrightarrow WEI. (\Leftarrow is clear.)

Proof. Let $i = a_E$ and take b such that $b \equiv_i a$ and $b \downarrow_i a$. By GEI, there exist $B \subset \mathcal{M}$ such that $\operatorname{wcb}_{\downarrow}(b/ai) = \operatorname{acl}^{\operatorname{eq}}(B)$. Put $C := \operatorname{acl}(B)$.

Note that $C \subseteq \operatorname{acl^{eq}}(B) \subseteq \operatorname{acl^{eq}}(i)$, as $b \downarrow_i ai$. We also have $b \downarrow_C \operatorname{dcl^{eq}}(ai)$ by Fact 1.1, symmetry, left transitivity and monotonicity. As $\operatorname{tp}(b/C)$ is \downarrow -stationary and $i \in \operatorname{dcl^{eq}}(b) \cap \operatorname{dcl^{eq}}(ai)$, $i \in \operatorname{dcl^{eq}}(C)$ by Fact 1.3. So we have $C \subseteq \operatorname{acl^{eq}}(i)$ and $i \in \operatorname{dcl^{eq}}(C)$, as desired. \Box

 set in the real sort is \bigcup -stationary. THEN T is stable, non-forking coincides \bigcup , and GEI implies WEI.

Proof. By Theorem 3.3 in [A], we have $\bigcup = \bigcup^{\mathfrak{p}}$. By Proposition 2.2 (2), T is stable and non-foking coincides with $\bigcup = \bigcup^{\mathfrak{p}}$. By Proposition 3.1, GEI implies WEI. \square

Corollary 3.3. Suppose T has a strict independence relation \bigcup having the intersection property. (i.e. $a \bigcup_A B$ and $a \bigcup_B A$ imply $a \bigcup_{A \cap B} AB$ for any $a \subset_{\omega} \mathcal{M}$ and any small subsets of \mathcal{M} such that $A = \operatorname{acl}(A), B = \operatorname{acl}(B)$.) If any type over algebraically closed set in the real sort is \bigcup -stationary, then T is stable with WEI and non-forking coincides with \bigcup in T.

Proof. By Proposition 3.4 in [Y3] and Theorem 3.2. \square

- Remark 3.4. (1) Let T be stable. Suppose that $\operatorname{tp}(a/A) \vdash \operatorname{tp}(a/\operatorname{acl^{eq}}(A))$ for any $a, A = \operatorname{acl}(A) \subset \mathcal{M}$. As $\operatorname{tp}(a/\operatorname{acl^{eq}}(A))$ is stationary by stability of T, we have GEI=WEI in T by Proposition 3.1. (Note that $a \downarrow_A B$ implies $a \downarrow_A \operatorname{acl^{eq}}(B)$ by symmetry, Fact 1.1 and left transitivity.) Now we show the stationarity of $\operatorname{tp}(a/A)$ i.e. if $\operatorname{acl}(A) = A \subseteq B = \operatorname{acl^{eq}}(B), a \equiv_A a', a \downarrow_A B$ and $a' \downarrow_A B$, then $a \equiv_B a'$: Note that $A \subseteq \operatorname{acl^{eq}}(A) \subseteq B$. By $\operatorname{tp}(a/A) \vdash \operatorname{tp}(a/\operatorname{acl^{eq}}(A))$ and $a \equiv_A a'$, we have $a \equiv_{\operatorname{acl^{eq}}(A)} a'$. By the above we have $a \downarrow_A B, a' \downarrow_A B$ and $a \equiv_{\operatorname{acl^{eq}}(A)} a'$, by stationarity of strong types in stability theory, we have $a \equiv_B a'$.
 - (2) Let T be a rosy theory with CM-triviality in the real sort. Then T is CM-trivial with GEI and weak canonical bases. (See Theorem 4.2 and Theorem 2.4 in [Y3].) If any type over algebraically closed sets in the real sort is \downarrow -statinary in T, then T is stable with WEI, non-forking coincides with \downarrow by Theorem 3.2.
 - (3) Any relational structure M such that Th(M) is amalgamation over closed sets ARE stable CM-trivial in the real sort and having non-forking stationarity of types over algebraically closed sets in the real sort (see [Y1] and [VY]). So, Th(M) has WEI by (2).
 - (4) D.M.Evans gives an example of \aleph_0 -categorical CM-trivial SU-rank one graph which does not have GEI. See [E] and [Y3]. This example is NOT CM-trivial in the real sort.
 - (5) If T is a theory having free amalgamation ternary relation, then T has NSOP₄, elimination of hyperimaginaries and WEI. See Theorem 4.4 and Theorem 5.6 in [C].
 - (6) We said that a definable set $D \subset \mathcal{M}$ is stably embedded if for any $n < \omega$ and \mathcal{M} -definable subset X of \mathcal{M}^n , there exists D-definable subset Y of \mathcal{M}^n such that $X \cap D^n = Y \cap D^n$. The following are equivalent by Lemma 2.3.2 in [CH].
 - (a) $D \subset \mathcal{M}$ is stably embedded and D has WEI.
 - (b) $\operatorname{tp}(i/\operatorname{acl^{eq}}(i) \cap D) \vdash \operatorname{tp}(i/D)$ for any $i \in \mathcal{M}^{\operatorname{eq}}$.
 - (7) Let D be a strongly minimal set with infinite $D \cap \operatorname{acl}(\phi)$. Then D has WEI. See Lemma 1.6 in [P1].
 - (8) D.M.Hoffmann points out a simple theory CCMA(=Compact Complex Manifolds with an Automorphism) having GEI and finite coding in Theorem 4.3.6 and Lemma 4.3.7 in [Ho]. But CCMA does not having EI by

- Corollary 3.6 in [BHM]. As WEI+finite coding=EI by Proposition 1.6 in [CF], CCMA does not have WEI.
- (9) The N-dimensional free pseudospace is ω -stable and N-ample but not (N+1)-ample with WEI. See [T] and [BMZ].
- (10) The theory of the free group is stable, n-ample for all $n < \omega$ and has GEI up to adding some reasonable sorts. See Theorem 4.6 in [S].
- (11) ACF, DCF, SCF_e^{*}(e < ω) eliminate imaginaries. SCF_e for $e \in \omega \cup \{\infty\}$ in the language of fields does not eliminate imaginaries and has finite coding, so it does not have WEI. See [MMP].

Question 3.5. Does SCF_e for $e \in \omega \cup \{\infty\}$ in the language of fields geometrically eliminate imaginaries? Find a stable theory (moreover, strongly minimal set) having GEI not having WEI.

References

- [A] H.Adler, Explanation of independence, Ph.D thsis, Freiburg, 2005, arXiv:math.LO/0511616 v1. 24 Nov 2005.
- [BHM] M.Bays, M.Hils and R.Moosa, Model theory of compact complex manifolds with an automorphism, Transactions of the AMS, volume 369 (2017), number 6, 4485–4516.
- [BMZ] A.Baudisch, A.Martin-Pizarro, M. Ziegler, Ample Hierarchy, Fund. Math. 224 (2014), 97-153.
- [C] G.Conant, An axiomatic approach to free amalgamation, J. Symbolic Logic, 82, No.2 (2017), 648-671.
- [CF] E.Casanovas and R.Farré, Weak forms of elimination of imaginaries, Math.Logic Quarterly, 50, No.2 (2004), 126-140.
- [CH] G.Cherlin, E.Hrushovski, Finite structures with few types, Annals of Mathematics Studies 152 (2003).
- [EO] C.Ealy and A.Onshuus, Characterizing rosy theories, J. Symbolic Logic, 72, No.3, (2007) 919-940.
- [E] D.M.Evans, ℵ₀-categorical structures with a predimension, Ann. Pure Appl. Logic 116 (2002), 157-186
- [Ho] D.M.Hoffmann, Model theoretic dynamics in Galois fashion, Ann. Pure Appl. Logic 170 (2019), 755-804.
- [Hr] E.Hrushovski, A new strongly minimal set, Ann. Pure Appl. Logic 62 (1993), 147-166.
- [K] B.Kim, Simplicity theory, Oxford Logic Guides 53, Oxford Science Publications (2014).
- [MMP] D.Marker, M.Messmer, A.Pillay, Model theory of fields, Lecture note in logic 5 (1996).
- [P] A.Pillay, An introduction to stability theory, Oxford Logic Guides 8, Oxford University Press (1983).
- [P1] A.Pillay, Model theory of algebraically closed fields, Model Theory and Algebraic Geometry, edit by E. Bouscaren, Lecture Note in Mathematics 1696 (1998), 61-84.
- [S] Z.Sela, Diophantine geometry over groups IX: Envelopes and imaginaries, arXiv:0909.0774 (2009).
- [T] K.Tent, The free pseudospace is N-ample. but not (N+1)-ample, J. Symbolic Logic 79, No. 2 (2014), 410-428
- [VY] V.Verbovskiy and I.Yoneda, CM-triviality and relational structures, Ann. Pure Appl. Logic 122(2003), 175-194.
- [W] F.O. Wagner, Simple theories, Mathematics and Its Applications, Kluwer Academic Publishers (2000).
- [Y1] I.Yoneda, CM-triviality and generic structures, Arch. Math. Logic 42 (2003), 423-433.
- [Y2] I.Yoneda, On CM-triviality, RIMS kokyuroku 1390 (2004), pp18-22.
- [Y3] I.Yoneda, Some remarks on CM-triviality, J.Math.Soc.Japan 61 (2009), 423-433

GENERAL EDUCATION, NATIONAL INSTITUTE OF TECHNOLOGY, GAKUENDAI, SHUNAN 745-8585, JAPAN

E-mail address: yoneda@tokuyama.ac.jp