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1. INTRODUCTION

Since it was first introduced in [3], it is still unknown whether the class of SOP;
theories and the class of SOP; theories are the same. Recently in [1], it has shown
that SOP; and SOP, differ at the level of formulas. This means that there exists
a formula witnessing SOP; but any conjunction of the formula does not witness
SOP5. In this note, we give a slightly stronger example. We construct a theory
which has SOPq, but every quantifier free formula does not witness SOP5.

2. PRELIMINARIES AND NOTATIONS

Notation 2.1. Let x and A be cardinals.

(i) By x* we mean the set of all functions from A to x.
(ii) By x<* we mean |J,_, x* and call it a tree. If k = 2, we call it a binary
tree. If kK > w, then we call it an infinitary tree.
(iii) By # or (), we mean the empty string in x<*, which means the empty set
(recall that every function can be regarded as a set of ordered pairs).
Let n,v € k<.
(iv) By n 9vwemean n C v. If n < v or v <, then we say n and v are
comparable.
(v) By n L v we mean that 7 € v and v 9 . We say 7 and v are incomparable
ifn L w.
By 1 A v we mean the maximal ¢ € k<* such that £ <7 and & <.
By (1) we mean the domain of 7.
By 1 <ien v we mean I(n) < l(v).
By 1 <jex ¥ we mean that n < v, or n L v and n(l(n Av)) <v(l(nAv)).
(x) By n”v we mean nU {(i + l(n),v(i)) : 2 < I(v)}.
Let 4,40, .., in_1 € K.
(xi) By (4¢...ip,—1) we mean the function ¢ € k™ such that ((k) = iy for all
k € n. Sometimes we just write it ig...i,—1 if there is no confusion.
(xii) By (i) we mean the function ¢ € ™ such that ¢(k) = i for all k € n.
Sometimes we just write it i(™) or i if there is no confusion. (i(?)) is defined

by ().
Definition 2.2. Let ¢(z,y) be an L-formula.

(i) ¢(x,y) is said to be having the tree property (TP) if there exists a tree-
indexed set (a;,)pew,<w of parameters and k € w such that
o {p(x,a,[p) fnew is consistent for all n € w* (path consistency),
o {(x,ay~;)}icw is k-inconsistent for all n € w<v.
1
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(ii) @(x,y) is said to be having the tree property of the first kind (TPy) if there

is a tree-indexed set (a,)pe,<~ of parameters such that
o {p(x,a,[p) fnew is consistent for all n € w*,
o {p(x,ay),p(r,a,)} is inconsistent for all n L v.

(iii) @(z,y) is said to be having the tree property of the second kind (TPg) if

there is an array-indexed (a; ;); je. of parameters such that
o {p(,ap.1(n)) fnew is consistent for all n € w*,
o {p(z,ai;),¢(z,a;r))} is inconsistent for all 7,7,k € w with j # k.

(iv) ¢(z,y) is said to be having the I1-strong order property (SOP;) if there is a
binary-tree-indexed (a;),e2<w~ of parameters such that

o {p(x,a,[p) tnew is consistent for all 7 € 2,
o {o(z,ay~1),0(z,ay~0~,)} is inconsistent for all n,v € 2<¢.

(v) @(z,y) is said to be having the 2-strong order property (SOP3) if there is a
binary-tree-indexed (a,)nec2<~ of parameters such that

o {¢(x,a,[n)}new is consistent for all € “2,
o {p(z,ay),p(x,a,)} is inconsistent for all n L v.

(vi) We say a theory has TP if there is a formula having TP with respect to its
monster model of the theory. Sometimes we say that the theory is TP, and
we call the theory an TP theory. We define TP theory, TPs theory, SOP;
theory, and SOP5 theory in the same manner.

(vii) We say a theory is NTP if the theory is not TP, and we call the theory
NTP theory. We define NTP; theory, NTP5 theory, NSOP; theory, and
NSOP; theory in the same manner.

Fact 2.3. (i) A theory has TP if and only if it has TPy or TPs.
(i1) If a theory has SOPs, then the theory has SOP;.
(iii) If a theory has SOP1, then the theory has TP.
(iv) A theory has SOPs if and only if the theory has TP;.

Let Lstr = {<, <jex, A} be languages where <, <j, are binary relation symbols,
and A is a binary function symbol. Then for cardinals x and A, a tree x<* can be
regarded as an Lg.-structure whose interpretations of <, <;.,, A follow Notation
2.1.

Definition 2.4. Let 77 = (1, ...,7,) and ¥ = (1, ..., ,) be finite tuples of x<*.
(i) By qftpg,(77) we mean the set of quantifier free L.-formulas ¢(Z) such
that k< = o(7).
(if) By  ~sr 7 we mean qftp,, () = aftp,,. (7).
Let £ be a language, T be a complete L£-theory, Ml be a monster model of T, and
(an)per<r, (by)yecn<r tree-indexed sets of parameters from M. For 77 = (no, ..., M),
we write Gy to denote (dag,,...,ay,). For any finite set of L-formulas A and a
type I, we write T'a to denote {¢ € T' : ¢ € A}. By @3 =a .4 by we mean
tpa (@7/A) = tpa(by/A).
(iii) We say (ap)pecq<r is strongly indiscernible (str-indiscernible) if tp(a;) =
tp(ap) for all qftp,. () = qftp,. (7).
(iv) We say (by),ex<» is strongly based (str-based) on (ay),eq<» if for all 7j and
a finite set of L-formulas A, there is 7 such that 7 ~g, 7 and l_)ﬁ =A 07.

Fact 2.5. Let a tree-indexed set (ay)pec,<w be given. Then there is a str-indiscernible
(by)new<w which is str-based on (ay)pew<w.
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The proof can be found in [5], [4], and [8]. The above statement is called the
modeling property of strong indiscernibility (str-modeling property).

Definition 2.6. Let x and \ be cardinals.

(i) We say a subset X of K<* is an antichain if the elements of X are pairwise
incomparable (i.e., n L v for all n,v € X).
(ii) We say a formula ¢(z,y) has antichain tree property (ATP) if there exists
a tree indexed set of parameters (a,),ec2<~ such that
e for any antichain X in 2<“, the set {p(x,a,) : n € X} is consistent,
and
e for any n,v € 2<%, if n < v, then {p(z,a,), p(x,a,)} is inconsistent.
We say a theory has ATP if there exists a formula having ATP. If a theory
does not have ATP, then we say the theory has NATP.

Remark 2.7. [1, Proposition 4.4, 4.6] If a formula witnesses ATP, then it witnesses
TP, and SOP;. In particular, if a theory has ATP, then it has TPs and SOP;.

Remark 2.8. Thus if we want to show that SOP; and SOP5 are not the same,
then it is enough to show that there exists a theory which is ATP and NSOP,.

Fact 2.9. [1, Section 6] There exists a theory which has a witness of ATP, and any
conjunction of the witness does not witness SOPs5.

3. AN ATP THEORY WITHOUT QUANTIFIER FREE SOP5 WITNESS

We construct a structure of relational language whose theory has a quantifier free
formula ¢(z,y) which forms an antichain tree, and every quantifier free formula in
L does not witness SOPs.

3.1. Construction.

Definition 3.1. Let n < w. An antichain X C 2<" is called a maximal antichain
if there is no antichain ¥ C 2<™ such that X C Y.

We begin the construction with language £ = {R} where R is a binary relation
symbol. For each n € w, let a,, € w be the number of all maximal antichains in
2<" and 3, be the set of all maximal antichains in 2<". We can choose a bijection
from a,, to 3, for each n € w, say u,. For each n € w, let A,, and B,, be finite sets
such that |4, | = a,, and |B,| = |2<"|. Their elements are denoted by

Ap ={a] : 1 < an}, B, ={by:ne 2<n},
Let C,, be the disjoint union of A,, and B,, for each n € w. For each n € w, let C,
be an L-structure such that C,, = (C,; R®"), where R®» = (af'sbp) € Apx By, :
€ pn(l)}-
For each n € w, let &, be a map from a, U2<" to a, 1 U2<"+! which maps
z — z for all x € o, U2<", and define € : C,, — Cyhy1 by af — a?j(}) and

by b?+(17)' Then ¢}, is an embedding. Thus we can regard C,, as a substructure
of C,,41 with respect to €.
Let P,, be the power set of ay,, {I';}i<20n an enumeration of P,, and p, the

cardinality of P,,. For each n € w, let d,, be a map from a, U2<" t0 a4, U2<"FPn
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which maps 7+ 0P for all n € 2<™ and I + 6,() for all | € «v,, where

(Op”/\,un(ll)
o u{oP i1 (1) L ¢ Ty}
6n(l) = Hntp, u{oP~ =110y 1 1 e T}
u{0Pr—i =1 (11) L e Ty}

Define (5:; : C’n — Cn+pn by a? — a?,j»(zl))n and b:]L — b:;:il;]n' Then 5:1 is an embedding.

Thus we can regard C,, as a substructure of C,_,, with respect to ;.
Then we obtain a chain of L-structures,

el o5 E;+p2 e St
(Cl — (CQ — (C2+p2 > (Cn — (Cn+1 — (Cn+1+pn+1 BN

Thus we choose C!, recursively as follows

(Cll = (Clv

(C/2 = CQ?

Ch; 11 = Cryyp, where Cy = Cyy,
(C/Qi+2 = (Ck+1 where (Ck = (C/2i+17

and for each i € w, let A} = Ay and B = By, where C; = Cy. Let C = |, C],
A =U,co, A% B =U,e, Bi, and C be the universe of C.

3.2. Verification. In this section we show that Th(C) has ATP and there is no
quantifier free formula in £ which has SOP3 modulo Th(C). First we check some
properties of Th(C). Recall that {v € 2<¥ : v < n} is linearly ordered by < for
each 7. This fact will be used frequently to prove the following propositions and
remarks.

Remark 3.2. It is clear that either C = 3zR(z,c) or C = JyR(c,y), for all c € C.
In fact C = 3z R(x,c) if and only if ¢ € B, and C |= JyR(c,y) if and only if ¢ € A.

Proposition 3.3. R(z,y) forms an antichain tree in Th(C).

Proof. By compactness, it is enough to show that for any n € w, there exists
(cy)ne2<n such that {R(z,¢,) : 7 € X} is consistent if and only if X is an antichain
in 2<”. Fix n € w, and let ¢, = bfi for each n € 2<", where C;, = C/,. Note that
k>n.

First we show that if X C 2<" is an antichain, then {R(z,c;) : n € X} is
consistent. Since 2<® C 2<F X can be regarded as an antichain in 2<*. Hence,
there exists a maximal antichain X C2<* containing X. Let [ = u;l(X’ ). Then
(af,cy) € R® for all n € X since (af,c,) = (af,bf) and n € X = pe(pp (X)) =
wi(l) for all n € X. Thus {R(z,c,) : n € X} is consistent.

For the converse, suppose X C 2<" is not an antichain. Then there exist n,v € X
such that n / v in 2<". Thus n £ v in 2<k. If {R(x,¢,) : 7 € X} is consistent, then
{R(x,b}). R(x,b%)} is consistent. Hence there exists a € A such that C = R(a, bf)A
R(a,b¥). By the construction of C, there exists k&’ € w such that a € A;, and we
may assume k = k’. Hence there exists | < ay such that C = R(af,bk) A R(af, bF).
Thus 1, v € ux(l). There exists an antichain in 2<% containing 7 and v but it is not
possible since n £ v. O
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Proposition 3.4. There is no by, by,bs, b3 € B such that

CE bo#b ANby #bs
AJz(R(z,bp) A R(z,b1)) A Jx(R(x,b2) A R(z, bs3))
A=z (R(x,bo) A R(x,b2)) A ~3z(R(z,by) A R(z, b3))
A—Jx(R(x,b1) A R(x,b2)) A —~3x(R(x,b1) A R(x,b3)).

Proof. Suppose such by, b, ba, by exist. We may assume they are by, , by , by, . by for
some n € w and 1o, N1,72,13 €2<". Since {R(x, b} ), R(x,by )} and {R(z,bp,),

R(x,bp.)} are conmsistent, by 1 by and bp L by in 2<". Since {R(z,0b) ),

7 Uns ’ Mo
.R(a;,bg?)}, {R(g;,bgo), R(rl;,bgs)}, {R(.?J,b:;l), R(.’L’,b:;z)}, {R(.’Iﬁ,bgl), R(:I:,bf;s)} are
inconsistent, b2, £ b, b L bE b L b L b Thus bE,be < b A D
Since {v € 2<™ : v < V' A"} is linearly ordered by < for all v/ # v”| we have
by, £ by, and it is a contradiction. O

Proposition 3.5. For all by, ...,b, € B, if C = —~3x(R(x,bo) A---AR(z,b,)), then
there exist ¢ < j < n such that C = —3z(R(z, b;) A R(z,b;)).

Proof. Suppose by, ...,b, € B and C = 3z (R(z,b;) A R(z,b;)) for all 4,5 < n. We
may assume that there exists k € w such that for each i < n, there exists n; € 2<%
such that b; = b . As we observed in proof of Proposition 3.3, (R(z,y), (bf), co<x)
forms an antichain tree with height k. Since {R(:c,bfh),R(z,bfh)} is consistent
for each 4,j < n, the set of indices {ny,...,n,} is pairwisely incomparable. Thus
{n0, ..., nn} is an antichain in 2<%, Thus {(R(x,b ), ..., R(x,bf )} is consistent in

7 7 No
Ck, and hence it is consistent in C. Therefore C = 3z(R(z,bo) A---AR(z,by,)). O

Proposition 3.6. For all ao, ...,an,ag,...,a;, € A, if a; # a} for each i < n,

" m

Jj <m, then C |=3y(R(ap,y) A--- A R(an,y) A —R(agp,y) A---A=R(al,,y)).

Proof. We may assume ao, ..., @n, ag, ..., &, € Ay for some k € w, where C, = C),

for some i € w. Hence there are ly, ..., 5, [, ..., ], < aj such that ag = afo, ey Oy =
k ok ok / i ;
ap, ag = ayg, . ap, = ap and l; # Ij for each i and j. Let {I'i}; 5o«

be the enumeration of Py, thempower set of ag. Then there exists e such that
Le = {ly, .-, 1;,}. By the construction of dj, the maximal antichain jiyp, (0x(l)) in
Brtp, does not contain 0P+=¢=D(1) for all j. On the other hand, pxip, (5% (1))
contains 0P+ ¢~ 17 (1) for all i since I; & I'.. Thus we have

k+pi, pk+
(C |: R(a’(;k (Il)zk)7 bop;fzve—l r\<1>)

for all 4, and
k+ k+
CE ﬁR(adk(’;f), bopkp_’“e_b<1>)
for all j. Since d; is an embedding from Cj; = Cy. to C,;,; = Cgyp,, We can say
that there is b € B such that C |= R(aj .b) for all i, and C = —R(ay;,b) for all j.

This completes the proof. (|

Proposition 3.7. For all by, ..., bn, by, ..., by, € B, if b; # b for each i <mn,j <m,
and C = 3z(R(x,b;) A R(x,b;)) for alli,j, then C = 3z (R(x,bo) A--- A R(x,b,) A
SR(w,by) A+ A ~R(2,B,)):

Proof. As in Proposition 3.6, we may assume by, ..., by, by, ...b),, € B = By, for

some k,d € w, hence there are 7o, ..., M, NGy -+, Moy, € 257 such that by = b’;o, B —

bf,n, 0 = bfré""’ 0 = bs, and n; # n; for each i < n and j < m. Since C =
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3a(R(x,by,) AN R(x,by,)) for each i,j < n, the set {ng,...,7,} forms an antichain
in 2<k. By the construction we may assume Cj = Chy, 1 is a substructure of
Cry1 = Cy, , with respect to . Thus 1o, ..., 7,7, -, 7y, can be regarded as
elements of 2<¥*1. Now we choose an antichain tree in 2<¥*! which contains
70, -, and does not contain 79, ...7,,. Let A be a maximal antichain in 2<F+1
which is defined by

{ve2<Ft.pyco2kandn Avforalli <n}U{no,....,nn}
Then n; € A for all i < n and n; ¢ A for all j < m. Let | = y;,;(A). Then
C = R(af™,bk+1) for all i < n, and C = —~R(a;*" bk“) for all j < m. This
completes the proof. O
Now we are ready to prove that Th(C) has no quantifier free formula which
witnesses SOPs. We begin the proof by showing that some conjunctions of basic
formulas do not witness SOPs.
Proposition 3.8. The formula o(Z,7',y) = \;<,, B(xi,y) AN N\, ~R(2],y) does
not witness SOPy modulo Th(C) for alln,m € w. That is, there is no (¢,¢ "), co<w =
(g, .l c, ...,c;g)n@@ in a monster model M of Th(C), such that
(i) {p(@ 1" y):n e w} is consistent for all n € “2
(ii) {@o(@, & y),o(c",8",y)} is inconsistent for all n L v in 2<¢.
Proof. To get a contradiction we assume there exists (", 5/’7)7762@ which witnesses
SOP, with ¢(Z,7',y). We may assume (G,),e2<~ is strongly indiscernible by the
modeling property. Thus
(R y), o RO ), ~RI, ). ~Blen ),
R(ef ), oo RO ), = R(e™ ), oy 2R )}
is inconsistent. By Proposition 3.6, there are i < n and j < m such that C¢<‘0> = c;-m
(1 _ ’.(0> 0 _ ;<1>_ Then CZ@ _ c;<10>, C§0> _ c;-<11> and
;<11> = cZ<O> = c;<10>. But it is

or ¢
(10>
G

We may assume c;
<11> (10) _

=¢; by strong indiscernibility. Thus ¢; ' =

10 10 (10 10

0 ) R y) ~R(e My, R@<>wﬁ

a contradiction because the set { R(c,
is consistent.
Proposition 3.9. The formula ¢(2,7,7) = N\;<,, B(z,4:) N \j<,, 7B(2,y;) does
not witness SOPy modulo Th(C) for alln,m € w. That is, there is no (¢",¢ ")yea<w =
(g, e, ...,c;g)n@@ in a monster model M of Th(C), such that

(i) {@(z, @™ 10" :n e w} is consistent for all n € “2

(ii) {@(z.@,E"),p(x,& ")} is inconsistent for all n L v in 2<%,
Proof. As in Proposition 3.8, we assume there is a strongly indiscernible tree of
parameters (&7, "), co<w which witnesses SOPy with ¢(z, 7, 7). Then

{R(z,c{"), ..., R(z, ), —R(x, c0<°>) LRz, o),
R(z, c(<)1>),.. R(z, cn>) =R(z,cy 1>) -R(z, c"<Ll>)}

is inconsistent. By Proposition 3.7, there are i < n, j7 < m such that c<o> =¢ My

<1> cj< >, or there are 4,7 < n such that {R(w,c§0>),R(w,c§-1>)} is inconsistent.
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If it is in the first case, then we can find a contradiction as we observed in Propo-
sition 3.8. Thus we assume {R(m,c§0>),R(1,c§-1>)} is inconsistent for some 7,5 <

n. By strong indiscernibility, {R(:L’,C§O>),R(;L’,C§H>)}, ~{R(;17,C§OO>),R(:r,,c§-1>)}~7 and
{R(z, c§00>), R(x, cj<-11> )} are inconsistent. On the other hand, { R(z, c§0>)7 R(x, c§00>)}

and {R(z, cj<-l>), R(x,c§ll>)} are consistent by the path consistency condition. But

then c§0>,c§00>,c§1>, cj<-11> violate Proposition 3.4. This completes the proof. O

To generalize the result of Propositions 3.9 and 3.8 to the case of quantifier free
formulas, we need the following fact and propositions.

Fact 3.10. [2, Corollary 4.11] Let T be an arbitrary theory. If T has SOPy then
there is a formula in a single free variable witnessing SOPs.

Proposition 3.11. Let T be a theory and suppose p(x,§)Vip(x,Z) witnesses SOP;
modulo T, where x is a free variable, and §, Z are parameter variables. Then o(x, )
witnesses SOPy or (x,Z) witnesses SOP;.

Proof. Let (b",2"),ca<. C M witnesses SOP2 with ¢ V ), where M is a monster
model of 7. We may assume the tree of parameters is strongly indiscernible. Since
{2, 0") vV ap(x, "), (2, 0”) Vib(x,)} is inconsistent for all L v, it is clear that
{o(z,b"),0(2,b")} and {¢(z,e"),v(x,é")} are inconsistent for all L v. Since
{02,009 v ¢(2,80")) : n € w} is consistent, there exists a € M such that
M = ¢(a, b)) vip(a, &) for all n € w. By the pigeon hole principle, there exists
an infinite subset I of w, such that M = ¢(a, b)) for all i € I, or M |= t(a, &)
for all i € I. Without loss of generality, we may assume M = o(a,b{?") for all
i € I. By strong indiscernibility, {p(z,b"™) : n € w} is consistent for all n € “2
because (7[1)new ~str (0°)icr. Thus p(z,§) witnesses SOPy with (07),co<w. O

Proposition 3.12. In Th(C), there is no quantifier free formula witnessing SOPs.

Proof. Suppose ¢ is a quantifier free formula witnessing SOP2 modulo Th(C). By
Proposition 3.10, we may assume @ is of the form ¢(z,@) where z is a single
free variable, w is a parameter variable. By using disjunctive normal form and
Proposition 3.11, we may assume ¢ is a conjunction of basic formulas. Thus we
may assume ¢ is of the form

/\R(z,wi) A /\ ~R(z,w}) A /\R(wz, 2) A /\ -R(w)", z).

But by the construction of C, we have either C = JyR(c,y) or C = JzR(z,c) for
all ¢ € C. Hence ¢ is of the form either

/\R(z,wi) A /\ﬁR(z,w;)
or
/\R(wi, z) A /\ﬁR(w;,z).
By Propositions 3.8 and 3.9 we know that both of the above formulas can not

witness SOP2 modulo Th(C). Thus we have a contradiction and this completes the
proof. O

Corollary 3.13. SOP; and SOPs are distinct at the level of formulas.
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Proof. By Proposition 3.12, there is no quantifier free formula witnessing SOP5 in
Th(C). In particular, A, , R(x,y;) does not witness SOP2 modulo Th(C) for all
n € w. By Proposition 3.3 and Proposition ??, the formula R(z,y) witnesses SOP;.
Hence SOP; and SOP5 are distinct at the level of formulas. [l

Remark 3.14. But Th(C) has a witness of SOPs. Define ¢(x,y) by

TFY
A—Jw(R(w,z) A R(w,y))
AFz(Fw(R(w,x) A R(w, z)) A ~Fw(R(w,y) A R(w, 2))).

Then ¢ says “y is a predecessor of z in the set of parameters" (i.e., y < x). For
each n € 2<%, let b, = by for some n € w. By the constructions of C, b, is well-
defined. Then {p(x,b,), p(x,b,)} is inconsistent whenever n L v. By compactness
{o(z,byrn) = n < w} is consistent for each n € “2. Thus (p(z,y), (by)nea<w)
witnesses SOP3 modulo Th(C).
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