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Abstract

In this paper, we propose an approach to enumerate Dung’s exten-
sions by solving a Partial Maximal Satisfiable Subsets Enumeration prob-
lem which is an extension of a Maximal Satisfiable Subsets Enumeration
problem[1]. More precisely, based on results in [2], we describe hard and
soft constraints, required to enumerate extensions, in the input language
of an SMT solver Z3[3]. Then we solve the problem with a solver by com-
bining a MSSEn solver of [1] and Z3. Finally, we conduct experiments to
enumerate extensions.

1 Introduction

Software-intensive product defects are often caused by inadequate software spec-
ifications. Therefore, it is important to improve the quality of software speci-
fications. In IEEE830-1998[4], 8 quality attributes of requirement specification
documents are defined as follows: correctness, unambiguity, completeness, con-
sistency, ranked for importance and/or stability, verifiability, modifiability and
traceability. There are research to improve these quality attributes. In this
paper, we focus on consistency.

Consistency is a quality attribute that the individual requirements do not
contradict each other. In [5] the authors showed following examples of incon-
sistencies: [Inconsistent Software Operations] the behavior and output of the
software for the same input are described in multiple places, and they are dif-
ferent, [Inconsistent Definitions] the definition for the same word are described
in multiple places, and they are different, and [Inconsistent Constraints] there
are constraints, but there is no solution that satisfies the constraints.

A traditional method to detect inconsistencies in specification documents
is reviewing. A reviewer manually detect inconsistencies in specification docu-
ments. On the other hands, there are automatic detection methods, for instance
formal methods. As formal methods are based on mathematical logic, we can
detect logical contradiction A A —A for propositions “A: the initial value of the
variable x must be set to 0” and “—A: the initial value of the variable  must
not be set to 0.



There are also inconsistencies that are not logical contradictions. For in-
stance, consider the following two sentences A; and A, where “A;: if the value
of the water temperature sensor > 90°C, transit from the heating mode to the
heat retention mode”, “As: if the value of the water temperature sensor is
> 95°C, transit from the heating mode to the heat retention mode”. A; and A,
are not logically contradict. A; requires more safety than A, since A; implies
As but not vice versa. If we formalize the description language in detail, we can
detect this inconsistency with formal methods. But such detailed formalization
yields complicated and huge formal specification documents and then detecting
inconsistencies in the documents will be infeasible.

Our future goal is to propose a method to support for resolving inconsisten-
cies in specification documents based on mathematical argumentation theory,
and then is to implement the porpoising method. In particular, we suggest
acceptable consistent set of descriptions in a specification document as Dung’s
extensions [6] of mathematical argumentation theory. Once a developer has
acceptable consistent sets of descriptions, they will be able to choose the most
acceptable set and fix the other descriptions to resolve inconsistencies. Based
on mathematical argumentation theory, proposing tool will have the following
advantages. First, our tool will be able to help engineers to resolve various
inconveniences, including logical contradiction and others as various inconsis-
tencies can be formulated as a binary relation, called an attack relation, of a
argumentation framework. Second, our tool will be able to help engineers to
resolve inconsistencies in a large specification document since inconsistencies are
abstracted as an attack relation.

In this paper, we propose a method to enumerate Dung’s extensions [6] by
solving a Partial Maximal Satisfiable Subsets Enumeration (PMSSEn) problem
that is an extension of a Maximal Satisfiable Subsets Enumeration problem][1].
More precisely, we describe hard and soft constraints to enumerate extensions
in the input language of Z3. Then we propose a PMSSEn(SMT) solver by
combining the MSSEn solver of [1] and a SMT solver Z3. Then we conduct an
experiment to enumerate extensions with the PMSSEn(SMT) solver.

The structure of this paper is as follows. In Section 2, we introduce defi-
nitions of Dung’s extensions of argumentation theory. Moreover, we also show
an idea to resolve inconsistencies in a specification documents by enumerating
extensions. In Section 3, we describe Dung’s extensions of an argumentation
frameworks (A, R) in the input language of Z3. In Section 4, we mention a
PMSSEn(SMT) solver and experimental results. Finally we make some con-
cluding remarks and future works in Section 5.

2 Preliminaries

In this section, we introduce the mathematical foundations to enumerate exten-
sions with an SMT solver. First, we introduce definitions of Dung’s extensions
of argumentation theory. Second, we review the constraints to enumerate ex-
tension in [2].



2.1 Dung’s Extensions

In this subsection, we introduce definitions of Dung’s extensions of argumenta-
tion theory. Moreover, we show an idea to resolve inconsistencies in a specifica-
tion documents by enumerating extensions.

Argumentation theory is an interdisciplinary field that has been studied in-
terdisciplinary in many fields, such as sociology, linguistics, psychology, logic,
dialectics on the issue of "how to justify a claim”. And, mathematical argu-
mentation theory is argumentation theory based on mathematical methods In
mathematical argumentation theory, an argumentation framework (A, R) is a
directed graph such that A is a set of abstract arguments and R is an attack
relation. For any a,b € A, R(a,b) means that “if a is true then b must be
false”. We say that “a attacks b” if R(a,b) holds. A subset S of A is consistent
if there are no a,b € S such that R(a,b) holds. An extension is a subset of A
that is consistent and has certain properties. Intuitively, an extension is a set of
acceptable arguments. We only show the definition of stable extension. Please
see [6] for the definitions of other extensions.

Definition 1 (Conflict-Free Subset, Stable Extension) A subset S of A
is conflict-free if there are no two arguments a and b such that R(a,b). A subset
S of A is a stable extension if it is conflict-free and, for each argument a € A,
if a ¢ S then there exists an argument b € S such that R(b, a).

A argumentation framework (A, R) can be considered as a specification doc-
ument, where an argument is a description in a specification document (e.g., a
sentence, a diagram, a logical formula, etc.) and an attack relation represents
inconsistencies in the specification document (e.g., a sentence a logically con-
tradicts to a sentence b). Then, an extension S of (A, R) can be considered as
an acceptable set of descriptions. Thus, S is consistent and trustworthy.

We show an example of resolving inconsistencies in a specification document
by enumerating extensions. Let (A, R) be an argumentation framework of a
specification document where A = {a,b,c,d}. Moreover, assume that subsets
{a,c} and {a,d} of A are extensions that are acceptable subsets of A. If you
accept {a, c} then the other arguments b and d must be corrected because b and
d are inconsistent with an argument in {a, c}.

2.2 Constraints to Enumerate Extensions

In this subsection, we review the constraints to enumerate extension in [2]. We
introduce three kinds of soft constraints, namely soft constraints to enumerate
maximal satisfiable subsets, soft constraints to enumerate minimal satisfiable
subset and soft constraints to enumerate satisfiable subset.

Let G(A, R) be the set of FO-formulas representing an argument framework
(4, R), namely an FO-formula representing an enumeration of A and the set

{R(a,b) | (a,b) € R}.



2.2.1 Preferred Extensions

We generally extract a maximal subset S of A satisfying a FO-formula ¥(S)
by extracting a Maximally Satisfiable Subset (MSS) of a hard constraint ¥(S)
and soft constraints S(a1), S(az2),...,S(a,) where A = {a1,a2,...,a,}. Since
a preferred extension is a maximal subset S of A satisfying a FO-formula
CF(S)AAS(S, f2), we enumerate preferred extensions by enumerating MSS’s
for

e Hard Constraints: CF(S)AAS(S, f2), G(A, R) and
e Soft Constraints: S(a1),S(as2),...,S(a,) where A = {a1,aq,...,a,}

with a PMSSEn(SMT) solver.

We show an example of enumerating preferred extensions whose soft con-
straints S(a), S(b),S(c),S(d),S(e). Assume that a PMSSEn(SMT) solver re-
turns a result including a subset {S(a), S(d)} of the set {S(a), S(b),S(c), S(d),
S(e)} of all the soft constraints. The resulting subset shows that the subset S =
{a, d} of Ais a maximal subset satisfying the hard constraint CF(S)AAS(S, f2).
Thus the set {a, d} is a maximal admissible subset, namely a preferred extension.

2.2.2 Grounded Extension

The grounded extension is a minimal subset of A satisfying a FO-formula
AS(S, fo)ACE(S, f3), then it is the complement of a maximal subset S of A
satisfying the negation of AS(S, f2)ACE(S, f3). Thus we extract the grounded
extension from (A, R) by enumerating MSS’s for the following constraints:

e Hard Constraints: AS(S, f2)ACE(S, f3), G(4, R) and
e Soft Constraints: —S(a1),~S(az2),...,~S(a,) where A = {a1,aq9,...,an}.

with a PMSSEn(SMT) solver. We note that the result of enumeration of the
above MSS’s is a single subset by the definition of the grounded extension.

We show an example of extracting the grounded extension whose soft con-
straints —S(a), =S(b), ~S(c), 7S(d), ~S(e). Assume that a PMSSEn(SMT) solver
returns a result including a subset {—5(b), ~S(c), 7S(d), ~S(e)} of the set {=S(a),
=S5(b), ~S(c),~S(d),~S(e)} of all the soft constraints. The resulting subset
shows that the subset S = {a} of A is a minimal subset satisfying the hard con-
straint AS(S, f2)ACE(S, f3). Thus the set {a} is a minimal complete extension,
namely the grounded extension.

2.2.3 Stable Extensions and Complete Extensions

Since a stable extension is a subset S of A satisfying a FO-formula CF(S) A
SE(S, f1), we enumerate stable extensions by enumerating MSS’s of

e Hard Constraints: CF(S) A SE(S, f1), G(A, R) and



e Soft Constraints: S(a1),S(az),...,S(an), 7S(a1), S (az),...,~S(a,) where
A= {al,ag,...7an}

with a PMSSEn(SMT) solver. We enumerate complete extensions in a similar
way.

We show an example of enumerating stable extensions whose soft constraints
S(a),S(b), S(c),S(d),S(e),~S(a),~S(b),~S(c),~S(d),~S(e). Assume that a
PMSSEn(SMT) solver returns a result including a subset S(a), =S(b), =S(c), S(d),
—S(e) of the set of all the soft constraints. The resulting subset shows that the
subset S = {a,d} of A is a subset satisfying the hard constraint CF(S) A
SE(S, f1). Thus the set {a,d} is a stable extension.

3 Modeling Extensions with an SMT Solver Z3

In this section, we describe hard and soft constraints of extensions in the input
language of Z3 to enumerate extensions with Z3. First, we declare some symbols
to describe an argumentation framework (A, R) and constraints. Second, we
describe hard constraints of the attack relation R and extensions. Finally, we
describe soft constraints of extensions.

3.1 Declaration of (A, R), Extensions and Skolem Func-
tions

We declare a set A by enumerating elements of A and an attack relation R as a
function. We also declare an extension S that is a subset of A as a membership
function. We declare the function S as an uninterpreted function so that an
SMT solver can find an realization of S [7].

# Node = A in <A,R>

Node, (a, b, ¢, d, e) = EnumSort(’Node’,(’a’,’b’,’c’,’d’,’e’))
# Atk(a,b)==True <=> a attacks b

Atk = Function(’Atk’, Node, Node, BoolSort())

# To extract an extension S,
# we define a membership function S:Node->Bool.
S = Function(’S’, Node, BoolSort()) # S(a)==True <=> a is in S

Formulas of the form Vz3yp(x,y) is required to describe admissible exten-
sions, complete extensions and stable extensions. As a formula of the form is
hard to solve with an SMT solver, we translate it to a logically equivalent for-
mula Vzp(z, f(z)) with a Skolem function f. We declare Skolem functions as
uninterpreted functions.

# We use the following constants and functions
# to describe formulas with quantifiers.
X, y = Consts(’x y’, Node)



# Skolem function for "Admissible Extension"
Skoleml = Function(’Skoleml’, Node, Node)

# Skolem function for "Complete Extension"
Skolem2 = Function(’Skolem2’, Node, Node, Node)
# Skolen function for "Stable Extension"
Skolem3 = Function(’Skolem3’, Node, Node)

3.2 Hard Constraints of R and Extensions

We describe an attack relation R of (A4, R) as hard constraints. More precisely,
we define whether an element a attacks an element b for any a,b € A.

Atk(a, a)==False,

Atk(a, b)==True, # means that "a" attacks "b".

Atk(a, c)==False, # means that "a" does not attacks "c".
Atk(a, d)==False,

Atk(a, e)==False,

As we have describe FO-formulas of extensions [2], we translate some of the
FO-formulas to hard constraints in Z3.

e CF(S): ForAll([x, y], Implies(And(S(x), S(y)), (Not(R(x,y)))))
e SE(S): ForAll([x], Or(S(x), And(S(Skolem3(x)),R(Skolem3(x),x))))

e AS(S): ForAll([x, y], Implies(And(S(x), R(y,x)),
And(S(Skolem1(y)),R(Skolem1(y),y)))),

e CE(S): ForAll([x],
Implies(Or(Not(R(Skolem3(a),a)),And(S(c),R(c,Skolem3(a))))),S(a)),

3.3 Soft Constraints of Extensions

A preferred extension is a MSS of the hard constraint CF(S) A AS(S, f2) and
soft constraints S(a) for any element a of A. The grounded extension is the
MSS of the hard constraint AS(S, f2) A CE(S, f3) and soft constraints —.S(a)
for any element a of A. A stable extension can be a MSS of the hard constraint
CF(S) ASE(S, f1) and soft constraints S(a), ~S(a) for any element a of A. We
only describe the soft constraints of a stable extension where A = {a,b,¢,d, e}.

S(a), # S(a)==True <=> a is in S
Not(S(a)),

S(b),

Not (S(b)),

S(c),

Not (S(c)),

S(d),



Not(S(d)),
S(e),
Not(S(e)),

4 Experiments: Enumerating Extensions

In this section, we first review a MSSEn Solver in [1] and extend it to a partial
MSSEn solver for constraints in FOL to enumerate Dung’s extensions. Second,
we show the correctness of our modeling in Section 3 and the proposing solver
by showing that our solver generate the same result in Examplel of [8]. Finally,
we show some experimental results to enumerate extensions.

4.1 PMSSEn(SMT) Solver

In this subsection, we mention a Partially Maximally Satisfiable Subsets Enu-
meration (PMSSEn) solver for constraints in FOL. A MSSEn solver is proposed
in [1]. With an SMT solver, the MSSEn solver can solve a MSSEn problem for
constraints in FOL. On the other hand, the MSSEn solver can be extended to a
Partial MSSEn solver by dividing constraints into hard constraints and soft con-
straints. Then, we have a Partial MSSEn solver for constraints in FOL by com-
bining the MSSEn solver and the SMT solver Z3[3]. We call it a PMSSEn(SMT)
solver. Thus, we can enumerate extensions by solving a Partial MSSEn problem
with the PMSSEn(SMT) solver since we have described hard constraints and
soft constraints as FO-formulas to enumerate extensions.

4.2 Correctness of our Modeling and Solver

In this subsection, we show the correctness of our modeling in Section 3 and
the PMSSEn(SMT) solver by showing that our solver generate the same result
in Examplel of [8].

Example 2 (Example 1 [8]) Let (A, R) be the argument framework where
A ={a,b,c,d,e} and R ={(a,b), (c,b), (c,d),(d,c),(d,e),(e,e)}. Then we have

the following extensions:
e Stable extension(s): {a,d},
e Preferred extensions: {a,c},{a,d},
e Complete extensions: {a,c},{a,d},{a} and
e Grounded extension: {a}.

We describe the above argumentation framework (A4, R) and then enumerate
extensions of (A, R) with the PMSSEn(SMT) solver. Thus, the solver returns
the same results as in [8]. We only show the result of enumeration of complete
extensions.



# means that {a,d} is a complete extension.

MSS [S(a), Not(S(b)), Not(S(c)), S(d), Not(S(e))]
# means that {a} is a complete extension.

MSS [S(a), Not(S(b)), Not(S(c)), Not(S(d)), Not(S(e))]
# means that {a,c} is a complete extension.

MSS [S(a), Not(S(b)), S(c), Not(S(d)), Not(S(e))]

4.3 Experimental Results

In this subsection, we show some experimental results to enumerate extensions.
Preferred extensions can be enumerated as a maximal subsets satisfying certain
property in FOL. The grounded extension can be extracted as the unique min-
imal subset satisfying certain property in FOL. Stable extensions and complete
extensions can be enumerate as subsets satisfying certain property in FOL. In-
deed, as stable extensions and complete extensions can be enumerated by solving
satisfiable subset enumeration problems, enumerating preferred extensions is the
most difficult problem to solve [9]. Thus, we show the result of an experiment
to enumerate preferred extensions in a argumentation framework (A, R).

We define the attack relation R using random numbers. More precisely, we
assume that R(a,b) holds for the two elements a and b of A with a probability
of 50%. Moreover, we also assume that there are no element a of A such that
R(a,a) holds. Because an element a represents a self-contradictory description
in a specification document when R(a,a) holds, while real specification docu-
ments may have self-contradictory descriptions.

We assume that |A| = 100 in the first experiment. The PMSSEn(SMT)
solver returns seven preferred extensions in 1387.30099988 seconds.

Experimental Result

MSS [S(n37), S(n21), S(n25), S(n30), S(n74), S(n97)]
MSS [S(n20), S(n49), S(n87), S(n9%4), S(nl)]

MSS [S(n3), S(n35), S(n53), S(n58)]

MSS [S(n53), S(n80), S(n20), S(n33), S(n95)]

MSS [S(n71), S(n91), S(n38), S(n78)]

MSS [S(n63), S(n87), S(n9%), S(nl), S(nd9)]

MSS [S(n32), S(n63), S(n82), S(n99), S(n45)]
elapsed_time:1387.30099988 [sec]
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We assume that |[A| = 150 in the second experiment. The PMSSEn(SMT)
solver returns five preferred extensions in 6589.398 seconds.

Experimental Result

MSS [S(n0), S(n56), S(n93), S(n12), S(nii1d)]

MSS [S(n129), S(n42), S(n53), S(n79), S(n106), S(n148)]
MSS [S(n6), S(n48), S(n116), S(n139), S(nl), Sn72)]
MSS [S(n87), S(ni124), S(n136), S(n73)]

MSS [S(n30), S(n96), S(n136), S(n8), S(n89), S(n119)]
elapsed_time:6589.398[sec]
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5 Concluding Remarks and Future Works

We proposed a way to model Dung’s extensions in the input language of an SMT
solver Z3. We also proposed a PMSSEn(SMT) solver by combining the MSSEn
solver in [1] and Z3. Then we show the correctness of our modeling and the
PMSSEn(SMT) solver. This way of modeling and the PMSSEn(SMT) solver
can support developers to resolve inconsistencies in specification documents.
A challenge is to show the validity of our modeling and the PMSSEn(SMT)
solver. Thus, our future work is to enumerate extensions from the argumentation
framework that corresponds to a real specification document.

An issue is to enumerate extensions of an argumentation framework (A, R)
such that |A] is large. With a randomly generated argumentation framework
(A, R) where |A| = 100, the PMSSEn(SMT) solver completed the enumeration
in a realistic amount of time. However, in a randomly generated argumentation
framework whose (A, R) where |A| = 150, the time required for enumeration in-
creased sharply. As the number of constraints required to enumerate extensions
is proportional to |A|?, it is presumed that both the search cost of one maximal
subset (the size of a maximal subset) and the cost of enumerating the maximum
subsets (the number of maximal subsets) increased in proportion to |A|%.

Another issue is to construct an argumentation framework (A, R) of a real
specification document and conduct an experiment to enumerate extensions of
(A, R). We plan to use a method such as natural language processing to estimate
R from a real specification document. In a real specification document, the
developer describe specifications while paying attention to consistency, then it
is natural to assume that the generated argumentation framework has very few
elements to be attacked. On the other hand, the smaller the number of attacked
elements of A is, it will be more easy to find an extension (a maximal consistent
subset).

This work is a joint work with Hiroyuki Kido (Cardiff University) and Toshi-
nori Takai (Nara Institute of Science and Technology). This work was supported
by JSPS KAKENHI Grant Number JP19K11914.
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