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ABSTRACT. In this note, we consider the embedding property for profi-
nite groups. We aim to prove the existence and uniqueness of the uni-
versal embedding cover for a profinite group.

Using the fact that the category of profinite groups is closed under
taking the inverse limit and the fibre product, we show that a profinite
group has a universal embedding cover. We recall the notion of the
complete system of a profinite group and we define the co-embedding
property for complete systems, dual to the embedding property for
profinite groups. We see that the theory of a complete system hav-
ing co-embedding property is Ng-categorical and w-stable. Using the
uniqueness of prime models of countable w-stable theories, we prove the
uniqueness of the universal embedding cover.

1. INTRODUCTION

For a profinite group G, let IM(G) be the set of isomorphism classes of
finite quotients of G. By abusing notation, we use IM(G) for the class of
finite quotients of G, that is, for a finite group A, A € IM(G) if and only
if there is an epimorphism ¢ : G — A. We say that G has the embedding
property (EP) if for A, B € IM(G), and for every epimorphisms I1 : A — B
and ¢ : G — B, there is an epmorphism @ : G — A such that Il oy = ¢.
As far as I know, the embedding property was first appeared in the work of
Iwasawa on the Galois group of the maximal solvable extensions of number
fields in [11] and so it is also called the Iwasawa property (c.f. [3, 1]). Let
k% C k%' be the maximal abelian extension and the maximal solvable
extension of a number field k respectively. In [11], Iwasawa showed that
the Galois group G(k**/k) has the embedding property. The embedding
property for profinite groups appears surprisingly in field arithmetic and
model theory of fields. A Frobenius field is a PAC field whose absolute
Galois group has the embedding property. Fried, Haran, and Jarden in [6]
developed Galois stratification of definable sets of a Frobenius field. In [9],
Haran and Lubotzky gave a primitive recursive procedure to construct the
universal embedding cover of a given finite group. Combined with Galois
stratification and their primitive recursive procedure, they showed that the
theory of perfect Frobenius fields is primitive recursive, and the theory of all
Frobenius fields is decidable. In [1], Chatzidakis showed that the complete

The author is supported by KAIST Advanced Institute for Science-X fellowship.
1



2 JUNGUK LEE DEPARTMENT OF MATHEMATICAL SCIENCES, KAIST

system of a profinite group having the embedding property is w-stable. Using
this with Chatzidakis’ independence theorem ([2, Theorem 3.1]), Ramsey in
[12, Theorem 3.9.31] showed that the theory of a Frobenius field is NSOP;.

In this note, we aim to prove that any profintie group has a universal
embedding cover and such a universal cover is unique. Chatzidakis in [1]
proved the uniqueness of the universal embedding cover for arbitrary profi-
nite groups using the complete system of a profinite group. As fas as I know,
this model theoretic proof is the only known proof working for all profinite
groups. We will prove the existence and uniqueness based on my recent

paper [8].

2. PRELIMINARIES

2.1. Profinite groups. Through this note, we consider only profinite groups.
The category of profinite groups, denoted by PG, is consisted the following
data:
e Ob(PG) : the family of profinite groups.
e Morpg : For A, B € Ob(PG), a morphism from A to B is a contin-
uous homomorphism.

We recall the inverse limit and the fibre product in the category PG.

Remark 2.1. Let (I, <) be a partially ordered set such that for all i,j € I
there is k € I such that i,7 < k. Consider the inverse system (Gj,7;; :
G — Gj)j<ier of profintie groups, that is,

e cach 7;; is an epimorphism.

o m;; =idg,.

o mjpom;=my fori>j>k.
Then, the inverse limit G := @Gi is again a profinite group.
Definition 2.2. Let II; : By —+ A and IIs : Bo — A be epimorphisms.
The fibre product of By and Bg over A along II; and Ils is the subgroup of
B1 X BQ,

{(bl,bg) S Bl X B2 : Hl(bl) = Hz(bg)}.

The fibre product of B; and By over A is again a profinite.

We have the following characterization of the fibre product.

Remark 2.3. [9, Lemma 1.1] Consider a commutative diagram of groups
with epimorphisms :

B 2. B,

ml lng

B1T1>A

and put p = II; o p; = Il3 o p3. The following are equivalent:
(1) B is isomorphic to the fibre product of B; and Bs over A.
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(2) B with p; and py is a pullback of the pair (I11,Ils), that is, for any
morphisms ¢; : C — B for ¢ = 1,2 with II; o 91 = Ils 0 49, there is
a unique morphism ¢ : C' — B such that p; o ¢ = 1; for i = 1, 2.

C 2
&/\
B —) BQ
1 le{ J{HQ
B1 Tl> A

(3) Kerpi NKerps = {e}, and A with II;,II is a pushout of the pair
(p1,p2), that is, for any homomorphism ¢; : B; — D for i = 1,2
with ¢1 0 p1 = @2 0 pa, there is a unique homomorphism ¢ : A — D
such that ¢ o Il; = ; for ¢ = 1,2.

B2, B,

TN

Bl—>A

R

(4) Kerp = Ker p; x Ker ps.
A diagram satisfying one of the above properties is called cartesian.

Remark 2.4. [9, Lemma 1.2] Let ; : C' — B; be a epimorphism for i = 1, 2.
Then, there is a commutative diagram:

S

—>32

B
1 pll lng

B1T1>A

, where the square is cartesian and v is a epimorphism. Moreover, we can

take A as C/ Ker(1)1) Ker(12).

2.2. Embedding property. In this section, we recall the definition of a
cover and an embedding cover and we will provide a criterion for a cover
not to be an embedding cover.

Definition 2.5. Let G be a profinite group.

(1) A cover of G is an epimorphism ¢ : H — G.
(2) A cover ¢ : H — G is called an embedding cover if H has the
embedding property.
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(3) An embedding cover ¢ : H — G is called universal if any embedding
cover ¢ : H — G factors through ¢, that is, there is an epimorphism
IT: H — H such that ¥ = @ oIl

We call H a cover, an embedding cover, or a universal embedding cover
respectively if the cover ¢ : H — G is.

Example 2.6. (1) Cy x5 has the embedding property where C,, is the

cyclic group of order n.

(2) For a cardinal &, the free profinite group F, of rank x has EP.

(3) For any finite group G, there is an embedding cover ¢ : H — G with
H finite (c.f. [9, Corollary 1.6]).

(4) (Ershov-Fried in [5, Section 2]) Let G := S35 x Co(= (C3 x Cq) x Cy).
Then, G has no EP because G/S3 = G/(C5 x Cy) = Cs but S3 #
Cg x Cs.

Next, we consider the set of fibre products of given groups G; and Ga.
Let p; : G1 X Go — G; be the projection map for i = 1,2. Define

H = H(Gl,Gg) = {H < Gl X G2 pl(H) = Gi,i = 1,2},

which is partially ordered by inclusion. By Remark 2.4, each group H in ‘H
is a fibre product of G; and Gy. Namely, let A := H/Ker(p1 [g) Ker(p2 ),
and for each i = 1,2, let II; : G; — A,p;(h) — h/A for h € H. Then, H is
the fibre product of G1 and G4 over A along 1I; and Ils. Now we consider a
dual notion to H. Consider the class of pairs of epimorphisms with common
images,
P :=P(Gy,Ge) = {(Hl,Hg) LGy — Ayl = 1,2},

and consider a pre-order relation < on P as follows: For (II;,II3) and
(I14, I1) in P, (II;,IIp) < (II4,1II5) if and only if there is an epimorphism

II: A" — Afor A:=1Im(Il;)(= Im(Ily)) and A’ := Im(II} ) (= Im(I1})) such
that

Gq Gy
\Hﬁ‘ V
Iy ﬁ/ 12
11
A

We write (I, I2) ~ (I, I15) if (I1;, o) < (1T}, II,) and (117, 115) < (II;, ILp).

Remark 2.7. (II;, IIy) ~ (II},II}) if and only if IT is an isomorphism. Thus,
the relation = is an equivalence relation.

Proof. Tt is enough to show the left-to-right direction. Suppose (II1,1I3) ~
(IT4,II5). Then, there are epimorphisms IT and II' witnessing (II;,IIz) <
(I}, I15) and (IT,115) < (II;,II3) respectively. Then, we have that II; o
Il' o IT = II; for 4 = 1,2. Since each II; is surjective, I’ o II is injective.
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Therefore, II is injective and II is an isomorphism. Similarly, I is also an
isomorphism. |

Then, the pre-order < on P induces a partial order on the set P/ ~, still
denoted by <. If there is no confusion, we write (P,<) for the partially
ordered set (P/ =~,<). Now we define a map T : P — H by sending
(Hl, HQ) to

T(Iy, H2) := {(g1,92) € G1 x G2 : l1(g1) = Il2(g2) }-
Note that T'(IIy,II3) is the fibre product of G and Go along IT; and IIs.

Lemma 2.8. [9, Lemma 1.7] The map T induces an order-reversing bijec-
tion between two posets P and H.

Proof. 1t is clear that T is order-reversing. It remains to show that it is
bijective. The map T is surjective by Remark 2.4, and injective by Remark
2.3(3). 0

Using Zorn’s Lemma with the inverse limit, we have the following result:

Lemma 2.9. [9, Lemma 1.8] For every (II1,1lz) € P, there is a mazimal
element (114,115) € P such that (1I3,112) < (II},115). Dually, for every

H € H, there is a minimal H' € H with H' C H.

We introduce the notion of the guasi-embedding cover (q.e.c.) of a profi-
nite group in [9, p. 189], or called the I-cover in [7, Definition 24.4.3].

Definition 2.10. A cover p : H — G is called a quasi-embedding cover
(q.e.c.) if for every embedding cover ¢ : E — G, there is an epimorphism
Yv:E— H.

By the definition of the quasi-embedding cover, we have the following prop-
erties.

Remark 2.11. Let G be a profinite group whose rank is .

(1) If two epimorphisms p : H — G and Il : G — A are q.e.c., then ITop
is a q.e.c.

(2) For any qg.e.c. p: H — G, the cardinality of H is less than or equal
to the cardinality of F,,. Furthermore, if G is finite, then so is H
because the universal embedding cover of G is finite (c.f. Example
2.6(2) and (3)).

(3) Let p: H — G be a q.e.c. which is an embedding cover. Then, p is
a universal embedding cover.

Any maximal element in P(B,G) for B € Im(G) provides a q.e.c. (c.f. in
the proof of [7, Lemma 24.4.4]).

Lemma 2.12. Let G be a profinite group and let B € IM(G). Let (I}, II3) €
P(B,G) be a mazimal element. Consider the following cartesian diagram
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induced from (TI1,Tls):

Then, po is a g.e.c.

Proof. Let 15 : G — G be an embedding cover. Then, B is in IM(G’). Since
G’ has EP, there is an epimorphism v : G’ — B such that II; oy = I 0.
Since H is the fibre product of B and G over A, by Remark 2.3(2), there is a
homomorphism i : E — H such that the following diagram is commutative:

el P2
Q\

2
H -2,
o1 .

Q

—
=
[V}

N

B T

Then, ¢[E] € H. Since y[E] < H and H is minimal (by Lemma 2.9),
we have that [E] = H so v is an epimorphism. Therefore, we have that
19 = pg o Y for an epimorphism v, and py is a g.e.c. (I

Finally, we have the following characterization of profinite groups having no
EP.

Lemma 2.13. [7, Lemma 24.4.4] If a profinite group G does not have EP,
then there exists a g.e.c. p: H — G with a non-trivial kernel.

Proof. Suppose a profinite group G has no EP. So, there exists

e A B e IM(G); and

e epimorphisms 7 : B — A and mo : G — A,
such that there is no epimorphism p : G — B with 73 = 7 o p. By Lemma
2.9, there is a maximal element (II;,1l3) € P(B,G) such that (71, m) <
(IL;,I1I3). Then, we have the following diagram:

H-2,q
pll lﬂz o
/ N
B A
\
1 A

where H is the fibre product of B and G over A'.
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Note that py is a q.e.c. by Lemma 2.12. Suppose py is an isomorphism.
Let p=pio0 p2_1. Then, we have that

mop=mo(piop;")
:((ﬂoHl)opl)opz_l
=mo (Tlzops)opy
=molly
= T2,

which is a contradiction. So, ps is not an isomorphism and so it has the
non-trivial kernel. O

2.3. Complete systems. We recall the notion of the complete system of
a profinite group (c.f. [1, Section 1] or [10, Subsection 3.2]). For a profinite
group G, we denote NV(G) by the set of open normal subgroups of G, which
forms a partially ordered set with inclusion. For a given profinite group G,
we associate an algebraic structure, called the complete system, encoding the
inverse system (G/N,7mn; N, : G/N1 — G/Na)n,<n,en(a)- The complete
system S(G) of G is an w-sorted structure equipped with three different
kinds of operations C, <, and P given as follows:

e For each k € w, the sort
m(k) = U G/N.
NEN(Q),[G:N]<k+1

e For k' < k € w, <y is a binary relation on m(k) x m(k’) defined

as follows: For gN € m(k) and ¢'N' € m(K'),

gN <¢N & NcCN'.

e For k' <k € w, Cy s is a binary relation on m(k) x m(k’) defined as

follows: For gN € m(k) and ¢'N' € m(k'),

C(gN,g'N') & gN C ¢'N'.

e For each k € w, Py is a ternary relation on m(k)? defined as follows:

For g1N1, g2 N2, g3 N3 € m(k),

P(g1N1, 92N2, g3N3) < N1 = N2 = N3(=: N) A g1g2N = g3N.

Note that each sort m(k) is disjoint. So, the complete system S(G) is a first
order structure in the language Lcg consisting of the following non-logical
symbols:

e a family of binary relations <j  and Cy s for &' <k € w,

e a family of ternary relations P for k € w.
If there is no confusion, we omit scripts and write <, C'and P for <, j/, Cj i/,
and Pi. Let CS be the theory of all complete systems of profinite groups.
Then, CS is axiomatized in the following axioms (c.f. [10, Definition 3.7]):

(1) e (order) < is reflexive and transtivie on S.
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e (maximal element) |m(0)| =1 and for all k¥ € w,
(Vo € m(0),Vy € m(k))(y < ).
(2) Define x ~ y as ¢ < y Ay < z. Denote the ~-class of a by [a] for
a € m(k) and set [a]g := [a] N m(k).
e (extending tuples) For k' < k € w,
(Va € m(K'),3b € m(k))(a < b).
o (finiteness) (Va € m(k))(|[a]x| < k).
o (degree continuity) For n < k € w,
(Va € m(n),3a’ € m(k))(a ~ d).
e (reducing degree) For n < k € w,
(Va € m(k)) (|[alx] < n — Fa’ € m(n)(a ~d)).
e (group) For k € w and a € m(k), ([al, P N[a]}) forms a group.
(3) e (intersection H N H') For k, k' k" € w,
(Va € m(k),b € m(k'),ce m(k"))(c<anc<b—
dd € m(kk')(c<dAnd < and<b)).
e (subgroup H C H')) For k, k' € w,
(Va € m(k),b € m(k'))(a <b— (3c € m(k))(b ~ c)).
(4) (modular lattice) For each S | CS, (S/ ~,<) forms a modular
lattice, which can be written as Lcg-sentences.
(5) e C(a,b) = a<b.
e (projections) For all a € m(k) and b € m(K), if a < b, then
C N (la]g x [b]x) is the graph of a group epimorphism mqy :
[a]k — [b]k’
e (compatible system) For k € w and a € m(k), 74,4 = id[),, and
ifa<b<c, then mq .= mp e 0 mgp.
(6) (normal subgroups) For & € w and a € m(k), and for any normal
subgroup N of [a]g, there is a unique b € m(k) such that
Cla,b) AN = {a"tc:c € [ap AC(a,b)}.
(7) (hidden axiom) For k, k', k" € w and a € m(k),b € m(k'),c € m(k"),
ifa <bAa<cAKer(m,y) = Ker(m,,), then b ~ c.

Also, any model of CS is a complete system of a profinite group. Namely,

let S = CS. Then, we have an inverse system ([a]i, Top)a<bes. Put G(S) :=
l'gl[a]k. Then, for each N € N(G(S)), there is a € m(k)(S) such that
N = Ker(m,) where 7, is the natural projection from G(S) to [a]x, which
implies that S(G(S)) = S. Consider the category CS of complete systems
whose morphisms are Lcg-embeddings. Let PG’ be a subcategory of PG
given as follows:

e Ob(PG') = Ob(PG).
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e Morpe: For A, B € Ob(PG’), a morphism from A to B is a contin-
uous epimorphism.

Remark 2.14. Two categories PG’ and CS are equivalent via the con-
travariant functors S : PG’ — CS and G : CS — PG'.

Definition 2.15. Let S = CS be a complete system.

(1) A subsystem of S is a substructure of S which is a model of CS.

(2) Let X C S. By Zorn’s Lemma, there is the smallest subsystem Sx
containing X. In this case, we say that Sx is generated by X. Note
that Sx C acl(X).

(3) Let X be a subset of S. We say that X is full if for each z € X and
for each k € w, [x] Nm(k) C X.

(4) A subset X of S is called relatively dense if for each s € Sx, there
is x € X such that x < s.

(5) A subset X of S is called a presystem if it is full and relatively dense.

Remark/Definition 2.16. (1) If X is full, then Sx C dcl(X), and
if X is a presystem, then any embedding from Sx to S is uniquely
determined by the image on X.

(2) We say that a subsystem S’ is finitely generated if there is a finite
subset X' such that S = Sx/. Also, we can take such X' as a
presystem. Note that a subsystem S’ is finitely generated if and only
if G(S) is finite.

Definition 2.17. Let S7 and Sy be finitely generated subsystems of S.

(1) min Sq :={a € S1:Vbe Si(a <b)}.
(2) S1V Sy :={c € m(kk') : [c] = [a] V [b],a € minS; N m(k),b €
min Sy Nm(k)}.

Let A and B be subsets of S. We write A < B if a < b for every a € A
and b € B. We write A ~ B if a ~ b for every a € A and b € B. Note
that for any subsystems S; and S of S, and for S3 = Sg,us,, we have that
min Sg ~ 57V Ss.

From the characterization of the fibre product in Remark 2.3, we have
the following.

Lemma 2.18. Let Sy, S1, and Sy be finitely generated subsystems of S such
that Sy C S1 N Sq, and let S3 = Sg,us,. Consider the following inclusions:

® 15,5 150 = 51, LSy,85 1 S0 — S2;
® 15, S5 51 — 53;
® 15, 83" Sy — 53.



10 JUNGUK LEE DEPARTMENT OF MATHEMATICAL SCIENCES, KAIST

(1) Suppose S1 V So ~ min Sy. Then, S3 is the co-fibre product of Si
and Ss over Sy, that is, we have the following cartesian diagram:

G
G(sy) —2), sy
G(LSI«SZS)l lG(LSOvSZ)
G(S1) ——— G(S)
G(LSO,Sl)

(2) Let S§ be a subsystem of S such that Sy C Sy and S}V Sz ~ min Sp.
Suppose there is an isomorphism f : S; — S§ making the following
diagram commute:

LSy,81

So 1

S
idl lf )
S

!/
SO LSOVS/l 1
then there is an isomorphism from g : S3 — S% extending f Uidg,,
where Sy = Sgr s, -
Remark 2.19. For finitely generated subsystems S; and Sz of S, the sub-

system Sg,us, is a co-fibre product of S1 and Sz over Sy, where Sy is the
subsystem generated by (S7 V S3) N.S; N .Ss.

Next, we introduce a dual notion of embedding property, called the co-
embedding property for complete systems.

Definition 2.20. We say that S has the co-embedding property (co-EP) if
for any finitely generated subsystems Si, Sy C S, and for any embeddings
II:5 — Sy and ®: Sy — S, there is an embedding ¥ : .S; — S such that

SQL)Sl

o e
Sy —— g’

where ¢ is the inclusion.

Remark 2.21. By Remark/Definition 2.16(1), co-EP is first order axioma-

tizable in the language Lcg and let CSgp be the theory of complete systems
having co-EP.

Since the category PG’ of sorted profinite groups and the category CS of
complete systems are equivalent by contravariant functors, we have the fol-
lowing relationship between EP and co-EP.

Remark 2.22. Let G be a profinite group. We have that G has EP if and
only if S(G) has co-EP.

For a complete system S, denote coIM(S) for the set of isomorphism
classes of finitely generated subsystems of S.
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Lemma 2.23. [1, Theorem 2.2] Let S1 and Sy be complete systems having
co-EP. Suppose |S1| = |S2| = Rg and coIM(S1) = coIM(S3). Then, S; = S,.

Proof. We will prove by the back-and-forth argument. List S = {ag, a1,...}
and So = {po, 51, ..}. Inductively, we construct an increasing sequence of
isomorphisms f; : Sil — 522 between finitely generated subsystems of 51
and Sy respectively such that for ¢ € w, «a; € S} if 7 is even, and 3; € S,;2
if 4 is odd. For each k = 1,2, let S*; be the trivial subsystem of S(G;),
that is, m(k)(S",) consists of the <-maximal element for each k € w. Let
f-1: Sil — 531 be the canonical isomorphism. Suppose that we have
constructed f;. Without loss of generality, we may assume that ¢ is odd.
Suppose 52.1 is generated by a finite presystem X; of Sj.

If aj4; € Sil, put Sil_H = Szl and put fi+1 = fi. If a1 ¢ Sil, let Sil_H
be the subsystem generated by the finite subset X; U [aiq1] N m(k) where
aj+1 € m(k). Since coIM(S1) = colM(S2), there is a subsystem Si2+1 of So
isomorphic to S}, ;. Let ¥ : S!; — 52, be an isomorphism. Note that
§i2+1 is also finitely generated because Sz'1+1 is finitely generated. Since S5
has co-EP, there is an embedding ¥ : §1'2+1 — Y9 to make the following
diagram commute:

i 7 O 7 O
1
idl V]
3
2 \
SZ 7 7 S(GQ)

Put S-2+1 = (Vo \TJ)[S}H] and put fiy1 = ¥ o W. Note that fi;1 extends f;

(3
because of the following diagram:

-1
2 fi 1
Si Si+1

idl lfi-o—l
872 —L> Si2+1
O

Remark 2.24. Note that for a complete system S and for any finitely
generated complete system S’, there are k € w and a positive integer N
such that

S" € coIM(S) & (X Cc m(k))(|X| < NASy =5,
Combining Fact 2.23 and Remark 2.24, we have the following results.

Fact 2.25. [1, Theorem 2.3, Theorem 2.4] Suppose that S has co-EP.

(1) Th(S) is axiomatized by CSgp together with the following axioms:
For every Sy € coIM(S) and Sy ¢ coIM(S),
o there is a finite presystem X of S such that Sx = Sy,
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e for any finite presystem Y of S, Sy 2 Ss.
(2) Th(S) is w-stable.

3. THE UNIVERSAL EMBEDDING COVER: EXISTENCE AND UNIQUENESS

In [9, Theorem 2.12], Haran and Lubotzky first proved the existence and
uniqueness of a universal embedding cover for the finitely generated case.
And in [7, Proposition 24.4.5, Corollary 24.4.8], Fried and Jarden showed
the existence of a universal embedding cover for the general case, and the
uniqueness for the countable rank case. Chatzidakis in [1, Theorem 2.7]
proved the existence and uniqueness of the universal embedding cover for
arbitrary profinite groups using the existence and uniqueness of prime mod-
els for countable w-stable theories. In this section, we will prove the existence
of the embedding cover for arbitrary profinite groups using the fact that the
category of profinite groups is closed under taking the inverse limit and the
fibre product.

3.1. Existence. Motivated from the proof of [9, Theorem 1.12], we first
prove that the inverse limit of g.e.c. is again a q.e.c.

Lemma 3.1. For an ordinal o, consider an inverse system (G;, T j)j<i<a
indexed by ordinals i < o such that
e for each j < i, the transition map m; ; is a g.e.c.,
e for each limit ordinal B, Gg is the inverse limit of the inverse system
(Gi)i<p with transition maps m; j,
e for each limit ordinal B and for i < [3, the transition map g, is
the natural projection from Gg to G; coming from the inverse limit
construction.

Let G be the inverse limit of (G;)i<q and let m; : G — G; be the canonical
projection for each i < . Then, Ty is a q.e.c.

Proof. If o is a successor ordinal, that is, & = o/ + 1, then G = G and
we are done. We assume that « is a limit ordinal. Let p : G’ — Gg be
an embedding cover. To show that 7 is a q.e.c., using transfinite induction,
we will construct a sequence (p; : G’ — G;)i<q of epimorphisms such that
for each igp < j < i < «a, pj = mjop;. Put pp := p. Suppose we have
constructed (p;)i<, for some v < . If v is a limit ordinal, there is a desired
morphism py : G’ — G, because G, is the inverse limit of (Gj)j<y. If
v ="+ 1 is a successor ordinal, there is a epimorphism r : G’ — G, such
that p,, = m, , or because 7, . is a q.e.c. Put p, := r, which is a desired
one.

Since G is the inverse limit of (G;)i<g, there is ¢ : G’ — G such that for
each ¢ < «, p; = m; 0 q. Thus, we have that p = mgoq, and mp is a q.e.c. U

Theorem 3.2. Let G be a profinite group. Then, there is a universal em-
bedding cover p: H — G. Furthermore, if G is finitely generated, then p is
the unique universal embedding cover (up to isomorphism,).
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Proof. If G has EP, thenid : G — G is a universal embedding cover. Suppose
G has no EP. Let g be the rank of G and let x; be the cardinality of F,.
Let N be a cardinal with (A :=)2% < N.

Using transfinite induction, we will construct an inverse system (G}, 7; ;) j<i<a
for some ordinal @ < N such that

e for each j < i, the transition map 7; ; is a g.e.c. with the non-trivial
kernel,

e for each limit ordinal 3, G is the inverse limit of the inverse system
(Gi, mij)j<i<ps

e for each limit ordinal 8 and for 7 < 3, the transition map mg; is
the natural projection from Gy to G; coming from the inverse limit
construction,

e GG, has EP.

Put G := G. Suppose we have constructed such an inverse system (G});<g
for an ordinal .

Case. f is a successor ordinal, that is, 8 = ' + 1. If Gz has EP, then
we stop the process. Suppose G has no EP. By Lemma 2.13, there is a
g.ec. p: (G, F') - (Gg, Fg) with a non-trivial kernel. Put Gg := G’ and
ngp = p. For each i < B, put mg; := mg ; o p. By Remark 2.11(1), each
78, is a q.e.c.

Case. (3 is a limit ordinal. Let Gg be the inverse limit of (G;);<g. For each
i < f3, let m3; be the natural projection map from Gz to G;. By Lemma
3.1, each mg; is a q.e.c.

For each j <4, m; j has a non-trivial kernel. Namely, suppose there exist
j < i such that Ker(m,j) is trivial. Since Ti,5 = Tj+1,7O0T5 541, where Tkk = id
for each k, Ker(mj11;) is also trivial, which is a contradiction. In our con-
struction, a should be less than R. Suppose not, that is, « > N. By Remark
2.11(2), we have that |G,| < k1. So, IN(G4)| <2t = X, Since |a] > R > A
by the pigeon hole principle, for some j < i < o, Ker(my ;) = Ker(ma;).
Since m,,; = T ; © Ta, We have that m; ; is injective, which is a contradic-
tion. Therefore, we have a q.e.c. o0 : Go — G such that any q.e.c. to G,
is injective. Therefore, by Lemma 2.13, G, has EP.

We now prove the furthermore part. Suppose G is finitely generated.
Let p; : G; — G be a universal embedding cover of G for ¢ = 1,2. By
[9, Theorem 1.12], G and G2 are finitely generated. By universality, there
are morphisms ¢ : Go — G and ¢ : G; — G2 such that p» = pj o ¢ and
p1 = p2oq’. Since Gy and Gs are finitely generated, by [13, Proposition 7.6],
both ¢ and ¢’ are bijective. O

3.2. Uniqueness. Following the proof scheme of [1, Theorem 2.7], we will
prove the uniqueness of a universal embedding cover for arbitrary profinite
groups.

Theorem 3.3. Any profinite group H has a universal EP-cover G which is
unique up to isomorphism over H.
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Proof. We first identify the theory of S(G). By Theorem 3.2, any A € IM(H)
has the unique universal EP-cover. Let I' be the set of isomorphism classes
of finite groups which is an image of the universal EP-cover of A for some
A € IM(H). Let T be the theory given by

T = CSgpUDiag(S(H))
U{3X(Sx = S(A)): AeT}
U{VX(Sx #5(B): B¢T},
which can be written as Lcog(S(H))-sentences by Remark 2.24.

Claim 3.4. The theory T is consistent and complete.

Proof. Let Y be a finite subset of Diag(S(H)), and let A;,..., A, € I and
Bi,...,Bp ¢ I'. By Remark 2.24, there are finite subsets Xi,..., X, of
S(H) such that A; is an image of the universal EP-cover of G(Sx;) for each
i. Let 8" := S(J,_ x;)uy be asubsystem of S(H). Then, G(S') is in IM(H),
and for the universal EP-cover E of G(S"), Ay,..., A, € IM(E)(C I') and
Bi,....By ¢ IM(E). Thus, T is finitely consistent and so it is consistent.
Also, it is complete by Lemma 2.23. U

Since T is w-stable, there is a prime model S of T" over S(H) which is
unique up to isomorphism. Let G := G(S) and let 7 : G — H be the
epimorphism dual to the inclusion ¢ : S(H) — S.

Claim 3.5. The epimorphism w : G — H is a uniersal EP-cover of H.

Proof. Let 7' : G’ — H be a universal EP-cover, which exists by Theorem
3.2. Since 7 is a EP-cover, we have that I' C IM(G') C IM(G) =T so that
IM(G") =T. Therefore, S(G’) is a model of T

Let ¢ : M — H be a EP-cover so that S(M) | CSgp. Since 7’ is
a universal EP-cover, there is p : M — G’ such that ¢ = 7’ op. Put
S" = Im(S(p)) C S(M), which is a model of T. Since S is a prime model
of T, there is an embedding ® : S — S’ such that ®(z) = S(q)(z) for
each z € S(H). Consider an embedding to ® : S — S" — S(M) where
t: 5" — S(M) is the inclusion. Then, the dual map ¢ :== G(to®): M — G
gives a morphism such that ¢ = 7w o ¢. Therefore, 7 : G — H is a universal
EP-cover. O

Therefore, we conclude that the dual group of any prime model of T" over
S(H) gives a universal EP-cover. Also, the proof of Claim 3.5 shows that
the complete system of a universal EP-cover of H is a prime model of T over
S(H). By the uniqueness of prime model of 7" over S(H), every universal
EP-covers of H are isomorphic. ([
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