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Dividing and forking are important concepts in model theory, both of
which are related to abstract independence. Although these two concepts
are not equivalent in general, in simple theories, they are equivalent. We
demonstrate that these concepts differ in random hypergraphs omitting a
certain kind of sub-hypergraphs. This work is an extension of the study that
I presented at the 2022 meeting of the MSJ. More comprehensive results
are examined as a jointwork with Kikyo, but in this paper, only the results
obtained solely by the author will be presented.

Definition 1. Let 2 < m <[ < w, and let R be an m-ary predicate symbol.
We study m-hypergraphs G represented by R. We simply refer to an m-
element set X C G with R(X) as an R-edge or an edge. For a finite G, the
number of edges in G is denoted by e(G), i.e., e(G) = {X € [G]" : G E
R(X)}|. Similarly ne(G) represents the number of m-element subsets of G
that do not form edges, i.e., ne(G) = {X € [G]™ : G | —R(X)}|. For s € w,
let H;"; be the class of all finite hypergraphs G such that

X €G] = ne(X) > s.

Notice that G € H]; means that G' omits a subset X C G of size [ that
satisfies e(X) > (T;) —s. Ifl=m+1and s = m — 2, then (;) — 5= 3.
Hence, the condition G € H}}\, ,,,_ is equivalent to the following:

X € [GI™ = e(X) < 3. (*)



H. 3370 is the class of all triangle free graphs. tetrahedron and tetrahedron omit-
ting one face. H il is the class of all 3-hypergraphs that omit tetrahedrons
and tetrahedrons with one omitted face. For an infinite set X, we say that
X belongs to the class HJ"; if every finite substructure of X is a member of
this class.

Proposition 2. 1. Fors < ( _22), HJ"; has the free-AP.

l
2. For s = (;;_22), HY', does not have the free-AP.

3. For s > (;:22), HJ"; does not have the AP.
Proof. We prove only 3. Assuming AP leads to a contradiction. By the
definition of H’, a complete hypergraph B of size [ — 1 belongs to ;. Let
A C B be an (I — 2)-element substructure, and consider C' = A U {c}, a
hypergraph with ne(C') = 1. In other words, C' is a hypergraph obtained by
eliminating one edge from a complete hypergraph of size | — 1. Let D € H[",

be an amalgam of B and C over A. Then, D = B U {c} as a set. Moreover,
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This is a contradiction. O]
Let F]’; be the Fraisse limit of the class H}';.

Theorem 3. For 3 <m <[l and s < (Tln__?’?)), the theory of F"; has SU-rank

one.

Proof. We work in a sufficiently saturated extension M = F". Let A and
a ¢ A be given. We show that SU(a/A) = 1. Let pa(x) = tp(a/A) and let
I = {A;}ic., be an indiscernible sequence with Ay = A. Tt is sufficient to
show that the following set is consistent:

D) = Jpa.(a).

Here pa,(x) denotes the type obtained from p(z) by replacing A with A;.
Letting I* := (I = U, Ai, we consider the hypergraph on the nodes
I U {z} such that all edges are those explicitly represented in I". Namely,
the relation R on I* U {z} is

(Ron I"YU{{z}UB:B¢e[I""" R(z,B) €T'(x)}.
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To see the consistency of I'; it is sufficient to see that the hypergraph I* U
{z} does not have a subset D of size [ such that ne(D) < s. So, for a
contradiction, let D € [I* U {z}]' satisfy ne(D) < s. D must contain =,
since any finite subset of I* belongs to H;";. Also, there are i # j such that
both D\ A; and D\ A, are non-empty, since otherwise D is isomorphic to a
substructure of AU{a}. Choose b € D\ A; and ¢ € D\ A;. For any set X in
[D\ {z,0,c}]™ 3, the m-element set X U{z,b, c} does not form an edge, due
to the definition of I'(z). Since D\ {x,b, ¢} has the cardinality  —3, there are
(l_3 )-many such sets X. This means that ne(D) > s. A contradiction. [

m—3
Definition 4. Let A and B be subsets of a hypergraph. ne(A/B) denotes
the cardinality of the set {X € [AUB]™ : BC X, AUB = -R(X)}.

Clearly, ne(A/B) is upper-bounded by (;A_\%). When using this notation,

we usually assume A and B are disjoint.

Theorem 5. For s = m — 2, in the theory of F'., o, forking and dividing
are different.

Proof. Since we have already treated the case m = 2, we assume m > 3.
We use the characterization (*) of H7',, , 5, and work in a large elementary
extension M of F'\, 5. Let A = ajay...an2,b,c be an m-tuple with
—R(A). Let p(z, A) be the formula

R(z,ay,...,4m—2,b) N R(x,a1,...,0m_2,¢) A /\ﬂR(x,X, b,c),
X

where X ranges over all (m—3)-element subsets of {ay, ..., an_o}. (If m =3,
X does not appear in the definition.) First, observe that ¢(z, A) is consis-
tent, meaning it has a solution in M. This follows from the fact that the
hypergraph AU {x}, whose edges are those explicitly represented in ¢(z, A),
belongs to K\ 1, o

Claim A. There is an indiscernible sequence (b;,¢;)icw OVET Q1 ..., Gm o
with by, co = b, ¢ such that R(as,...,am—2,b;,¢;) iff i < j for alli,j € w.

Prepare variables x; and y; for ¢« € w. We create a hypergraph with the
set H = {ay,...,q;_3}U{z;,y; : i € w}, where the R-edges of the hypergraph
are defined by the set

{{0’17"'7am727xi7yj} Z<.7 <W} (**>
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What we have to show is that H belongs to H™"3"'. For showing this, let D
be an (m + 1)-element subset of the hypergraph H. We show that e(D) < 3.
If {a1,...,am—2} is not a subset of D, then D has no edges. So we can
assume D = {ay,...,a, 2} UX, where X C {x;,y; : i € w} is a three elment
set. There are several possibilities for the shape of X. But, in any case, we
have e(D) < 2, by (**). Thus, we can find a copy (over ay,...,a,_2) of H
in M. By a simple compactness argument, this copy can be selected to form
an indiscernible sequence over {ay, ..., an—2}. (End of Proof of Claim A)

Claim B. ¢(z, A) divides over ay, ..., apm_o.

Select an indiscernible sequence I := (b;¢;)icw, as demonstrated to exist
in Claim A. For a contradiction, suppose that {¢(x,a1,...,am_2,b;,¢) :
i € w} is realized by d € M. Let D be the (m + 1)-element set
{ai, ..., am—2,bo,c1,d}. The following m-element subsets are edges in D:

{al, vy m_9, bo, d}, {al, ceeyp_2,Cq, d} and {CLl, vy 9, bo, Cl}.

So, we must have e(D) > 3. However, this is impossible, since D € H?, | ..
(End of Proof of Claim B)

Claim C. Let I = (b;,¢;)icw, be an indiscernible sequence over ay, ..., G, o
starting with by, co = b, c. If there is no edge of the form {ay, ..., am—2,b;,¢;},
where © # j, then the set T'(x) := {p(z,a1,...,am_2,b;,¢;) 11 € w} is consis-
tent.

Let I* denote the set {b; : 1 € w}U{¢ : i € w}. We consider the
hypergraph H := {ay,...,am—2} U I* U {x} whose edges are those explicitly
represented in I'. For showing that I'(z) has a solution in M, it is sufficient
to show that the above hypergraph H is in H}}\ ,,, ,. Let D C H be any
(m + 1)-element set. According to the characterization (*), what we need to
show is that e(D) < 3. If x ¢ D, then D is a subset of {ay,...,a, 2} UI* so
we are done. Thus, in what follows, we assume x € D. There are two cases
to consider. First we treat the case {ai,...,a,_2} C D. In this case, D has
one of the following form:

1. D= {al, e ,am,g} U {bl, Cj} U {.’L‘},
2. D=Aar,...,amo} U{by,bj} U{x} (i #j),
3. D=A{ay,...,am-2}U{c,c;}U{z} (i # ).



In the case of 1, if ¢ = 7, then D is isomorphic to the hypergraph {z} U
A defined by the formula p(z, A), so e(D) < 3. Also, if ¢ # j, then by
our assumption, the only edges in D are {ai,...,a,_2} U {b} U {z} and
{ar,.. ., am—2} U{c;} U{zx}, and we are done.

In the case of 2, by the definition of our hypergraph H, there is no edge
that contains all of z, b;, b;. So, the possible edges are {a1, ..., an_2}U{b;}U
{z}, {a1,...,am—2} U{b;} U{z}, and {a1,... ,am—2} U {b;,b;}. However,
the last set cannot be an edge, because if it were, the (m + 1)-element set
{a1, ..., am_2}U{bo, b1, ba} would have three edges due to the indiscernibility.
The case 3 is treated in the same way.

Now, we treat the remaining case, i.e., some a; (1 <t < m — 2) does not
belong to D. Then, |DN{a,...,an—o} < m — 3. Since other cases treated
similarly, we assume DN {ay,...,am_2} = {a1,...,ar}, where k < m—3. Let
B C D be an m-element set. We prove that, if B contains x, then B is not an
edge. So, let B have the form B = {ay,...,a;,} UCU{z}, where C C I*. Let
wd(C) == min{|X| : X C w, C C U;ex{bici}}. (wd stands for width.) If
wd(C') > 2, then B is not an edge, due to the definition of H. If wd(C') = 1,
then k£ = m—3, and B is isomorphic to {a1, ..., an_3}U{b,c}U{z}. So, due
to the definition of ¢(x), B is not an edge. Hence, the only possible edge is
D\ {z}. Namely, e(D) < 1. (End of Proof of Claim C)

Claim D. Let A* = aq,...,0;,_2,b1,...,b be an R-free tuple, where n* is
sufficiently large. Let 1(x, A*) be the formula

\/ gp(:z:,al,...,am_g,bl-,bj).

1<i<j<n*
Then, ¥(z, A*) does not divide over ay, ..., Qm_2.

Suppose, for the sake of contradiction, that (x, A*) divides over
ai,...,am—2. Choose an indiscernible sequence I = (b;1,...,bin+)icw Wit-
nessing the dividing, where by 1,...,bp = b1,...,b,«. Since ¥ is a dis-
junction of the formulas ¢(x, a4, ..., am_2,b;,b;) (1 < i < j < n*), the set
Lj(x) = {p(z,a1,...,@m-2,bn4,b,;) : n € w} must be inconsistent for all
i<j<nt

Hence, by Claim C, for all i < j < n*, (at least) one of the following is
true:

(i) R(ai,...,am—2,bn;, by ;) for all n < n’ < w;



(ii) R(ay,...,am-2,byj, by ;) forall n <n’ <w.

So, using Ramsey’s theorem, by symmetry of the argument, we can find 7 <
j < k < n* such that the situation (i) holds true for each of (i, 5), (4, k), and
(7, k). Here we used the assumption that n* is sufficiently large. Then, by the
indiscernibility, the (m +1)-element set X := {as, ..., am—2} U{bos, b1, boi}
satisfies e(X) > 3. This implies that X ¢ H,, =, which leads to a
contradiction. O
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