LOCAL MODULARITY, PILLAY'S ONE-BASEDNESS AND CF-PROPERTY IN o-MINIMAL STRUCTURES

IKUO YONEDA GENERAL EDUCATION, NATIONAL INSTITUTE OF TECHNOLOGY, TOKUYAMA COLLEGE

Abstract. In o-minimal structures, weak one-basedness, weak local modulaity, strong linearity, generic linearity, linearity and CF-property are equivalent. We discuss the implications among modularity, local modularity, Pillay's one-basedness and CF-property.

CONTENTS

- 1: Independence relation in rosy theories and dimension in $U^{\mathfrak{p}}=1$ structures
- 2: CF-property
- 3: An example of non-locally modular o-minimal structure with CF-property
- 4: Pillay's one-basedness for strong types of real tuples in o-minimal structures
- 5: Pillay's one-basedness for any strong type of real tuple in o-minimal structures implies CF-property
- 6: Does CF-property imply Pillay's one-basedness in o-minimal structures?
- 7: Appendix: Weakly local modularity implies strong linearity in geometric structures

1. Independence relation in rosy theories and dimension in $U^p = 1$ THEORIES

Let \mathcal{M} be a sufficiently saturated model of an L-theory T. $e \in \mathcal{M}^{eq}$ is an imaginary iff $e = \bar{a}/E$, where $E(\bar{x},\bar{y})$ is an \emptyset -definible equivalence relation with $\mathrm{lh}(\bar{a}) = \mathrm{lh}(\bar{x}) = \mathrm{lh}(\bar{y})$, where $\bar{a} \subset \mathcal{M}$ is a finite tuple. For $e \in \mathcal{M}^{\mathrm{eq}}$ and $A \subset \mathcal{M}^{\mathrm{eq}}$ we write $e \in \operatorname{acl}^{\operatorname{eq}}(A)$ if $|\{\sigma(e) : \sigma \in \operatorname{Aut}(\mathcal{M}^{\operatorname{eq}}/A)\}|$ is finite. $\bar{a}, \bar{b}, \bar{c}, \ldots$ denote finite tuples of \mathcal{M}^{eq} and $A, B, C, D \dots$ donote small subset of \mathcal{M}^{eq} .

The independence calculus See [A].

A $\overline{symmetric \text{ ternary relation}} * \downarrow * \text{ on } \mathcal{M}^{eq} \text{ has the independence calculus if the}$ following 8 conditions hold:

- (1) Invariance: $A \downarrow_B C$ and $ABC \equiv A'B'C'$ imply $A' \downarrow_{B'} C'$ (2) Normality: $A \downarrow_B C$ implies $A \downarrow_B BC$. (3) Monotonicity: $A \downarrow_B C$ and $A_0 \subseteq A$ imply $A_0 \downarrow_B C$

- (4) Transitivity: If $B \subseteq C \subseteq D$, then $A \downarrow_B D$ iff $A \downarrow_B C$ and $A \downarrow_C D$
- (5) Extention: There exists $A' \equiv_B A$ such that $A' \downarrow_B C$.

Date: March 4, 2024.

¹⁹⁹¹ Mathematics Subject Classification. 03C45, 03C45.

Key words and phrases. weak canonical bases, o-minimal structures, rosy structures, local modularity, Pillay's one-basedness, CF-property.

- (6) Finite character: If $\bar{a} \downarrow_B C$ for any finite tuple $\bar{a} \subseteq A$, then $A \downarrow_B C$.
- (7) Local character: For any $B, A \subset \mathcal{M}$, there exist a cardinal $\kappa(B)$ and $A_0 \subseteq A$ such that $|A_0| \leq \kappa(B)$ and $B \downarrow_{A_0} A$.
- (8) Anti-reflexivity: $\bar{a} \downarrow_A \bar{a}$ implies $\bar{a} \in \operatorname{acl}^{eq}(A)$.

We say \mathcal{M}^{eq} is rosy if it has the independence calculus.

If \downarrow is the thorn independence, symmetry \Leftrightarrow transitivity \Leftrightarrow local character modulo the above other properties. In any $U^{\mathfrak{p}} = 1$ (rosy of rank one) structure \mathcal{M} , (i.e. $a \in \operatorname{acl^{eq}}(A)$ iff $U^{\mathfrak{p}}(a/A) = 0$, where $a \in \mathcal{M}$. $b \notin \operatorname{acl^{eq}}(A)$ iff $U^{\mathfrak{p}}(b/A) = 1$, where $b \in \mathcal{M}$.) for any $a, b \in \mathcal{M}$ and $B \subset \mathcal{M}^{eq}$, $a \in \operatorname{acl^{eq}}(Bb) \setminus \operatorname{acl^{eq}}(B)$ implies $b \in \operatorname{acl^{eq}}(Ba)$, as $a \not\perp_B b$ iff $b \not\perp_B a$, we can define $\dim(\bar{a}/A)$ and $\dim(\bar{a}/Ae)$. For any $\bar{a} \subset \mathcal{M}$, $e = \bar{a}/E \in \mathcal{M}^{eq}$ and $A \subset \mathcal{M}^{eq}$, we define $\dim(e/A) := \dim(\bar{a}/A) - \dim(\bar{a}/Ae)$.

Fact 1.1. Any o-minimal structure is rosy of rank one (i.e. $U^{\mathfrak{p}} = 1$)

2. CF-Property

For real tuple $\bar{a} \in \mathcal{M}^n$ we write $\bar{a} \in \operatorname{dcl^{eq}}(A)$ if $\{\sigma(\bar{a}) : \sigma \in \operatorname{Aut}(\mathcal{M}^{eq}/A)\} = \{\bar{a}\}$. We say that $(\mathcal{M}, <, \cdots)$ is o-minimal structure if any definable set $X \subseteq \mathcal{M}$ is a finite union of intervals and points. $\operatorname{acl^{eq}}(*) = \operatorname{dcl^{eq}}(*)$ in the real sort \mathcal{M}^n $(n < \omega)$ by lexicographic order in o-minimal structures.

Let $\varphi(\bar{z})$ be an \emptyset -definable set and let $C(x,y,\bar{z})$ be an \emptyset -definable set such that

$$C(x, y, \bar{z}) \to \varphi(\bar{z}) \land y \in \operatorname{dcl}(\bar{z}, x) \land \dim(x, y/\bar{z}) \le 1$$

Then we write $y = f_{\bar{z}}(x)$.

For any $a \in \mathcal{M}$, we define an a-definable equivalent relation on U: For $\bar{c}, \bar{c}' \models \varphi(\bar{z}), \bar{c} \sim_a \bar{c}'$ iff there exists a' > a such that $f_{\bar{c}}(x) = f_{\bar{c}'}(x)$ on the interval (a, a'). Put $\hat{\bar{z}}_a = \bar{z}/\sim_a \in \mathcal{M}^{\text{eq}}$.

Definition 2.1. We say that an o-minimal structure $(\mathcal{M}, <, \cdots)$ has Collapse of Families of functions-property if for any $a \in \mathcal{M}$ and any $\bar{c} \models \varphi(\bar{z})$ we have

$$\dim(\hat{\bar{c}}_a/a) \le 1.$$

We call $\hat{\bar{c}}_a$ Peterzil's germ of \bar{c} at a.

An example of non CF-property: Multiplication violates CF-property. In $(\mathbb{R}, +, \cdot, <)$, put $f_{(b_1,b_2)}(x) = \overline{b_1}x + b_2$. Then $(b_1,b_2) \sim_a (c_1,c_2)$ iff $(b_1,b_2) = (c_1,c_2)$. So $\hat{b}_a = (b_1,b_2)/\sim_a$ is interdefinable with (b_1,b_2) over a. So $\dim(\hat{b}_a/a) = 2$.

3. An example of non-locally modular o-minimal structure with CF-property

Definition of partial endomorphisms:

Suppose that (I, +, <) is a group-interval (roughly speaking it has a partial definable group operation on the interval I) in an o-minimal structure. We say that an \emptyset definable partial unary function f is a partial endomorphism if

- (1) dom(f) = I or dom(f) = (-c, c) for some $c \in I$.
- (2) If $a, b, a + b \in dom(f)$, then f(a + b) = f(a) + f(b).

Fact 3.1. [LPe]: Suppose that (I, +, <) is a group-interval in a locally modular ominimal structure \mathcal{M} and let f be a partial endomorphism in I. Then there exists a total endomorphism with $dom(g) = \mathcal{M}$ such that f = g|dom(f).

In \mathbb{R} , put $\pi|(-1,1)(x) = \pi \cdot x$ for each $x \in (-1,1)$.

We can define $\pi \cdot y = n \cdot \pi | (-1, 1) \left(\frac{y}{n} \right)$ for each $y \in (-n, n)$, where $n \in \mathbb{N}$.

We can not extend $\pi|(-1,1)$ to non-standard part, so $\text{Th}(\mathbb{R},+,0,1,<,\pi|(-1,1))$ is not locally modular by Fact 3.1. As $\text{Th}(\mathbb{R},+,0,1,<,\pi|(-1,1))$ does not interpret any field-interval, it has CF-property by trichotomy theorem [PeS].

4. Pillay's one-basedness for strong types of real tuples in o-minimal structures

For any real type p over $C = \operatorname{acl^{eq}}(C)$, we can find $\bar{a}\bar{b} \models p$ such that $\dim(\bar{a}\bar{b}/C) = \dim(\bar{a}/C) = |\bar{a}|$ and $\bar{b} = f(\bar{a},\bar{c})$, where f is an \emptyset -definble function and $\bar{c} \subseteq C$. We say that \bar{a} is a generic tuple for p.

The germs of definable functions:

We define an \bar{a} -definable equivalence relation $E_{f,\bar{a}}$ as follows. $E_{f,\bar{a}}(\bar{c},\bar{c}') \Leftrightarrow$ there exists an open neighborhood U of \bar{a} such that $f(\bar{x},\bar{c}), f(\bar{x},\bar{c}')$ are defined on U and $f(\bar{x},\bar{c})|U = f(\bar{x},\bar{c}')|U$ OR neither of $f(\bar{x},\bar{c}), f(\bar{x},\bar{c}')$ is defined on an open neighborhood of \bar{a} .

 $\bar{c}_{E_{f,\bar{a}}} := \bar{c}/E_{f,\bar{a}}$ is the germ of definable function f around \bar{a} .

We call $\bar{c}_{E_{f,\bar{a}}}$ Pillay's germ of \bar{c} at \bar{a} (with respect to f).

Weak canonical bases for strong type $\operatorname{stp}(\bar{a}\bar{b}/C) := \operatorname{tp}(\bar{a}\bar{b}/\operatorname{acl}^{\operatorname{eq}}(C))$:

An algebraically closed set D is said to be weak canonical base of $\operatorname{stp}(\bar{a}\bar{b}/C)$ if $D = \operatorname{acl^{eq}}(D)$ is the smallest subset of $\operatorname{acl^{eq}}(C)$ with $\bar{a}\bar{b} \downarrow_D C$, and we write $\operatorname{wcb}(\operatorname{stp}(\bar{a}\bar{b}/C))$ for the D.

If weak canonical bases exist, the germs of definable functions will be interdefinable with weak canonical bases over generic tuples.

A strong type without weak canonical base:

We work in Th($\mathbb{R}, +, 0, 1, <, \pi | (-1, 1)$). Take $a, b, c > \mathbb{R}$ with $|a-b| < 1, |c-\pi \cdot b| < 1$ and a, b, c are independent in a saturated model of Th($\mathbb{R}, +, 0, 1, <, \pi(*)$), where $\pi(*)$ is totally defined. Put

$$d := \pi(a - b) + c.$$

Then wcb(stp(a, d/b, c)) does not exist. (If it existed, then $\pi(a) \in dcl(a)$ would follow in Th($\mathbb{R}, +, 0, 1, <, \pi|(-1, 1)$). Let $f(x, y, z) = \pi \cdot (x - y) + z$. Claim: $(b, c)_{E_{f,a}} \in dcl(a, d)$.

Let $\sigma \in \text{Aut}(\mathcal{M}/a, d)$. Then we have

$$f(a, b, c) = \pi(a - b) + c = d = \sigma(d) = \pi(a - \sigma(b)) + \sigma(c) = f(a, \sigma(b), \sigma(c)),$$

$$E_{f,a}((b,c),(\sigma(b),\sigma(c)))$$

Later we will say that stp(a, d/b, c) is Pillay's one-based.

Fact 4.1. [Pi] Suppose that $\dim(\bar{a}\bar{b}/C) = \dim(\bar{a}/C) = |\bar{a}|$ and $\bar{b} = f(\bar{a},\bar{c})$, where f is an \emptyset -definble function and $\bar{c} \subseteq C = \operatorname{acl^{eq}}(C)$.

- (1) If wcb(stp($\bar{a}\bar{b}/C$)) exists, there exists $\bar{d} \subseteq \text{wcb}(\text{stp}(\bar{a}\bar{b}/C))$ such that $\text{dcl}^{\text{eq}}(\bar{d}, \bar{a}) = \text{dcl}^{\text{eq}}(\bar{c}_{E_{\bar{t}},\bar{a}}, \bar{a})$.
- (2) If there exists $\bar{d} \subseteq C$ such that $\operatorname{acl}^{\operatorname{eq}}(\bar{d}, \bar{a}) = \operatorname{acl}^{\operatorname{eq}}(\bar{c}_{E_f, \bar{a}}, \bar{a})$, then $\operatorname{acl}^{\operatorname{eq}}(\bar{d}) = \operatorname{wcb}(\operatorname{stp}(\bar{a}\bar{b}/C))$, the weak canonical base of $\operatorname{stp}(\bar{a}\bar{b}/C)$ exists.

Pillay's germ $\bar{c}_{E_{f,\bar{a}}}$ is an almost weak canonical base over a generic tuple \bar{a} .

Definition 4.2. Suppose that $\dim(\bar{a}\bar{b}/C) = \dim(\bar{a}/C) = |\bar{a}|$ and $\bar{b} = f(\bar{a},\bar{c})$, where f is an \emptyset -definble function and $\bar{c} \subseteq C = \operatorname{acl}^{eq}(C)$. We say that $\operatorname{stp}(\bar{a},\bar{b}/C)$ is Pillay's one-based if

$$\bar{c}_{E_{f,\bar{a}}} \in \operatorname{acl}^{\operatorname{eq}}(\bar{a}, f(\bar{a}, \bar{c})) = \operatorname{acl}^{\operatorname{eq}}(\bar{a}, \bar{b}).$$

If weak canonical bases exist, Pillay's one-basedness implies usual one-basedness: We have $\operatorname{wcb}(\bar{a}, \bar{b}/\operatorname{acl^{eq}}(C)) \subseteq \operatorname{acl^{eq}}(\bar{a}, \bar{b})$, so $\dim(\bar{a}, \bar{b}/C) = \dim(\bar{a}, \bar{b}/C \cap \operatorname{acl^{eq}}(\bar{a}, \bar{b})) \ge \dim(\bar{a}, \bar{b}/C)$.

- Question 4.3. (1) In o-minimal structures, modularity implies Pillay's one-basedness for any strong type of real tuples. Does local modularity imply Pillay's one-basedness for any strong type of real tuples in o-minimal structures? It is known that local modularity implies CF-property [Pe].
 - (2) In o-minimal theories, is there non Pillay's one-based strong type without its weak canonical base? There exists Pillay's one-based strong type without its weak canonical base as we mentioned above in this section.
 - (3) Local modularity implies one-basedness under assuming the existence of weak canonical bases for any strong type in rosy theories [Y]. Is there locally modular rosy theory with a strong type without its weak canonical base?
 - 5. Pillay's one-basedness for any strong type of real tuple in o-minimal case implies CF-property

Peterzil's germ and Pillay's one are almost same by the following fact.

Fact 5.1. [LPe]: Assume dense linear ordering. $\hat{c}_a = \hat{c}'_a \Leftrightarrow \bar{c}_{E_{f,a}} = \bar{c}'_{E_{f,a}}$. In particular, we see $\operatorname{dcl^{eq}}(\hat{c}_a, a) = \operatorname{dcl^{eq}}(\bar{c}_{E_{f,a}}, a)$ and $\operatorname{dim}(\hat{c}_a/a) = \operatorname{dim}(\bar{c}_{E_{f,a}}/a)$.

Proof. (\Leftarrow): Clear. (\Rightarrow): $\hat{c}_a = \hat{c}_a'$ iff $f(x,\bar{c}) = f(x,\bar{c}')$ on (a,a') for some a' > a. Take $\sigma \in \operatorname{Aut}(\mathcal{M})$ such that $\sigma(a) \models \operatorname{tp}(a/\bar{c},\bar{c}') \cup \{a < x < a'\}$. (If $a \not \perp \bar{c}, \bar{c}'$, then $f(x,\bar{c}) = f(x,\bar{c}') = d \in \operatorname{dcl^{eq}}(\bar{c},\bar{c}')$ is constant around a: Let M_0 be a prime model over \bar{c},\bar{c}' . Let $a_+ \models \{x : a < x < e \text{ if } a < e \in M_0\}$. We have $a_+ \not\in M_0$. By $f(a_+,\bar{c}) = f(a_+,\bar{c}')$ and dense linear ordering, there exists a closed interval $J = [e_1,e_2]$ containing a_+ such that $e_i \in M_0$ and $f(x,\bar{c}) = f(x,\bar{c}')$ on J. Note that $e_1 \leq a$. Otherwise $a < e_1$, then $a_+ < e_1$ follows, a contradiction.) So we may assume $a \perp \bar{c}, \bar{c}'$. Take a thorn non-forking extension of $\operatorname{tp}(a/\bar{c}, \bar{c}')$ over \bar{c}, \bar{c}', a, a' satisfying a < x < a'. As $f(x,\bar{c}) = f(x,\bar{c}')$ on the interval I = (a,a') containing $\sigma(a)$, we have $\bar{c}_{E_{f,\sigma(a)}} = \bar{c}'_{E_{f,\sigma(a)}}$. By considering σ^{-1} which fixes \bar{c} and \bar{c}' , we see $\bar{c}_{E_{f,a}} = \bar{c}'_{E_{f,a}}$. \square

Remark 5.2. For any generic tuple \bar{a} , we have $f_{\bar{c}}(\bar{a}) \in \operatorname{dcl}(\bar{c}_{E_{f,\bar{a}}}, \bar{a})$.

Suppose that $\sigma \in \operatorname{Aut}(\mathcal{M}/\bar{a})$ such that $\bar{c}_{E_{f,\bar{a}}} = \sigma(c)_{E_{f,\bar{a}}}$. Then we have $f(x,\bar{c}) = f(x,\sigma(\bar{c}))$ on an open neighborhood containing \bar{a} . So we see $f_{\bar{c}}(\bar{a}) = f_{\sigma(\bar{c})}(\bar{a}) = f_{\sigma(\bar{c})}(\bar{a})$

 $\sigma(f_{\bar{c}}(\bar{a}))$ as desired.

Proposition 5.3. Pillay's one-basedness implies CF-property.

By the above remark and Pillay's one-basedness, $f_{\bar{c}}(a)$ is interalgebraic with $\bar{c}_{E_{f,a}}$ over a. Fact 5.1 and $\dim(f_{\bar{c}}(a)/a) \leq 1$ imply $\dim(\hat{c}_a/a) = \dim(\bar{c}_{E_{f,a}}/a) = \dim(f_{\bar{c}}(a)/a) \leq 1$. \square

6. Does CF-property imply Pillay's one-basedness in *o*-minimal structures?

A consideration for unary generic tuple a:

We have $\dim(\bar{c}_{E_{f,a}}/a) \leq 1$ by CF-property and Fact 5.1 and $f_{\bar{c}}(a) \in \operatorname{dcl}(\bar{c}_{E_{f,a}}, a)$ by Remark 5.2.

Assume that $\dim(f_{\bar{c}}(a)/a) = 1$.

We have $\dim(a, f_{\bar{c}}(a), \bar{c}_{E_{f,a}}) = \dim(f_{\bar{c}}(a)/\bar{c}_{E_{f,a}}, a) + \dim(\bar{c}_{E_{f,a}}/a) + \dim(a) \leq 2$. On the other hand we have $\dim(a, f_{\bar{c}}(a), \bar{c}_{E_{f,a}}) = \dim(\bar{c}_{E_{f,a}}/a, f_{\bar{c}}(a)) + \dim(f_{\bar{c}}(a)/a) + \dim(a) = \dim(\bar{c}_{E_{f,a}}/a, f_{\bar{c}}(a)) + 2$.

Therefore we have $\bar{c}_{E_{f,a}} \in \operatorname{acl}^{\operatorname{eq}}(a, f_{\bar{c}}(a))$.

A consideration for n-ary generic tuple \bar{a} :

We have $\dim(\bar{a}, f_{\bar{c}}(\bar{a}), \bar{c}_{E_{f,\bar{a}}}) = \dim(f_{\bar{c}}(\bar{a})/\bar{c}_{E_{f,\bar{a}}}, \bar{a}) + \dim(\bar{c}_{E_{f,\bar{a}}}/\bar{a}) + \dim(\bar{a}) = \dim(\bar{c}_{E_{f,\bar{a}}}/\bar{a}) + \dim(\bar{a}).$ On the other hand, we have $\dim(\bar{a}, f_{\bar{c}}(\bar{a}), \bar{c}_{E_{f,\bar{a}}}) = \dim(\bar{c}_{E_{f,\bar{a}}}/\bar{a}, f_{\bar{c}}(\bar{a})) + \dim(f_{\bar{c}}(\bar{a})/\bar{a}) + \dim(\bar{a}).$

Remark 6.1. The following are equivalent.

- (1) $\dim(\bar{c}_{E_{f,\bar{a}}}/\bar{a}, f_{\bar{c}}(\bar{a})) = 0$
- (2) $\dim(\bar{c}_{E_{f,\bar{a}}}/\bar{a}) = \dim(f_{\bar{c}}(\bar{a})/\bar{a}).$
- (3) $\dim(\bar{c}_{E_{f,\bar{a}}}/\bar{a}) \leq \dim(f_{\bar{c}}(\bar{a})/\bar{a}).$

Proof. Use Remark 5.2 $f_{\bar{c}}(\bar{a}) \in \operatorname{dcl}(\bar{a}, \bar{c}_{E_{f,\bar{a}}})$. \square .

Question 6.2. Is there an o-minimal theory with CF-property with a non Pillay's one-based strong type? CF-property with elimination of imaginaries and the existence of weak canonical bases for any strong type imply modularity in o-minimal theories [Y].

7. APPENDIX : WEAKLY LOCAL MODULARITY IMPLIES STRONG LINEARITY IN GEOMETRIC STRUCTURES

The following proof appears at Propostion 2.17 in [BV], but it is complicated. We give a modified proof.

Suppose that $(\mathcal{M}, \downarrow)$ is weakly local modular and $\hat{\mathfrak{C}} := \{\hat{C}(x, y, \hat{a}) : \hat{a} \models \hat{\varphi}(\hat{z})\}$ is 2-dimensional almost normal interpretable family of plane curve.

So $\dim(\hat{\varphi}(\hat{z})) > 2$. We seek a contradiction.

Suppose that $\mathcal{M} \models \hat{\varphi}(\hat{a})$ and $\dim(\hat{a}) \geq 2$. Put $k = \dim(\bar{a})$ and $\bar{a} = a_1, a_2, \ldots, a_k, a_{k+1}, \ldots, a_n$, where $a_{\leq k}$ is acl-independent and $a_j \in \operatorname{acl}(a_{\leq k})$ for $j = k+1, \ldots, n$. Take c, d such that $\hat{C}(c, d, \hat{a}), c \cup \bar{a}, \dim(cd) = 2$. By wealy local modularity, there exists B such that $B \cup \bar{a}, cd$ and $\bar{a} \cup_{\operatorname{acl}(\bar{a}, B) \cap \operatorname{acl}(cdB)} cd$. Put $X = \operatorname{acl}(\bar{a}, B)$ and $Y = \operatorname{acl}(cdB)$. Then we have $X \cup_{X \cap Y} Y$.

Claim 1 : $\dim(X \cap Y/B) = 1$

 $\dim(XY/B) = \dim(Y/XB) + \dim(X/B) = \dim(cd/\bar{a}, B) + \dim(X/B)$ (as $cd \downarrow_{\bar{a}} B$) = $\dim(cd/\bar{a}) + \dim(X/B) = 1 + k$. Since $k + 1 = \dim(XY/B) = \dim(X/Y) + \dim(Y/B) = \dim(X/X \cap Y) + 2$, we have $\dim(X/X \cap Y) = k - 1 < k = \dim(X/B)$. So Claim 1 follows.

Take t such that $\operatorname{acl}(tB) = X \cap Y$. We have $\bar{a} \downarrow_{tB} cd$. As $\bar{a} \downarrow_{tB} cd$ and $d \in \operatorname{acl}(c\bar{a},B)$, $d \in \operatorname{acl}(ctB)$ follows. On the other hand, we have $\dim(\bar{a}/tB) = \dim(X/X \cap Y) < \dim(X/B) = k$, we may assume $a_k \in \operatorname{acl}(a_{\leq k-1}tB)$. Take $\bar{u}, \bar{v} \subset B$ such that $d \in \operatorname{acl}(ct\bar{u})$ and $a_k \in \operatorname{acl}(a_{\leq k-1}t\bar{v})$. Put $\bar{w} := \bar{u}\bar{v} \subset B$. As $\bar{w} \downarrow cd\bar{a}$, we have $a_k \not\in \operatorname{acl}(a_{\leq k-1}\bar{w})$ and $d \not\in \operatorname{acl}(ct\bar{w}) \setminus \operatorname{acl}(c\bar{w})$. So we have $a_k \in \operatorname{acl}(a_{\leq k-1}t\bar{w}) \setminus \operatorname{acl}(a_{\leq k-1}\bar{w})$ and $d \in \operatorname{acl}(ct\bar{w}) \setminus \operatorname{acl}(c\bar{w})$. By exchange property of algebraic closure for geometric structures, $t \in \operatorname{acl}(a_{\leq k}\bar{w})$ and $t \in \operatorname{acl}(cd\bar{w})$.

Take $\bar{b} \models \operatorname{tp}(\bar{a}/\operatorname{acl}(\bar{c}d\bar{w}))$ such that $\bar{a} \downarrow_{cd\bar{w}} \bar{b}$. Note that $\operatorname{acl}(cd\bar{w}) = \operatorname{acl}(cdt\bar{w}) = \operatorname{acl}(ct\bar{w})$. Take $\bar{b} \models \operatorname{tp}(\bar{a}/\operatorname{acl}(cd\bar{w}))$ such that $\bar{a} \downarrow_{cd\bar{w}} \bar{b}$. Not that $\operatorname{acl}(cd\bar{w}) = \operatorname{acl}(cdt\bar{w}) = \operatorname{acl}(ct\bar{w})$.

Claim 2: $c \notin \operatorname{acl}(\bar{a}, \bar{b}, t\bar{w})$

As $c \downarrow \bar{a}$ and $\bar{a}, cd \downarrow B$, we have $c \downarrow \bar{a}, B$. As $t, \bar{w} \in \operatorname{acl}(\bar{a}, B), c \downarrow \bar{a}, t\bar{w}$ follows. By automorphism fixing $\operatorname{acl}(cd\bar{w})$ which sends \bar{a} to \bar{b} , we have $c \downarrow \bar{b}, t\bar{w}$. So $c \downarrow_{t\bar{w}} \bar{b}$ follows. Since $\bar{a} \downarrow_{ct\bar{w}} \bar{b}$, we have $\bar{a}, c \downarrow_{t\bar{w}} \bar{b}$. So $c \downarrow_{\bar{a},t,\bar{w}} \bar{b}$ and $c \not\in \operatorname{acl}(\bar{a},t\bar{w})$, Claim 2 follows. Take $\bar{b} \models \operatorname{tp}(\bar{a}/\operatorname{acl}(cd\bar{w}))$ such that $\bar{a} \downarrow_{cd\bar{w}} \bar{b}$. Not that $\operatorname{acl}(cd\bar{w}) = \operatorname{acl}(ct\bar{w}) = \operatorname{acl}(ct\bar{w})$.

Claim 3: $\hat{a} \notin \operatorname{acl}(cd\bar{w})$

Note that $c \downarrow \bar{a}$ and $d \in \operatorname{acl}(c\hat{a})$. As $B \downarrow cd\bar{a}$ and $\bar{w} \subset B$, we have $\bar{w} \downarrow_{cd} \bar{a}$. So $\dim(\hat{a}/cd\bar{w}) = \dim(\hat{a}/cd) = \dim(cd\hat{a}) - \dim(cd) = \dim(c\hat{a}) - 2 = \dim(c) + \dim(\hat{a}) - 2 = \dim(\hat{a}) - 1 \ge 1$, because we assume $\dim(\hat{a}) \ge 2$.

Claim 4: $\hat{a} \notin \operatorname{acl}(\hat{b})$: By Claim 3 and $\hat{a} \downarrow_{cd\bar{w}} \hat{b}$.

By Claim 2, $c \notin \operatorname{acl}(\bar{a}, \bar{b})$. As $\bar{b} \models \operatorname{tp}(\bar{a}/\operatorname{acl}(cd\bar{w}))$, we have $\hat{C}(c, d, \hat{a}) \land \hat{C}(c, d, \hat{b})$. $\{\hat{a} \models \varphi(\hat{z}) : \hat{C}(x, y, \hat{a}) \land \hat{C}(x, y, \hat{b}) \text{ is infinite}\}\$ is infinite by Claim 4. Here, we use elimination of \exists^{∞} for geometric structures. $\hat{\mathfrak{C}} := \{\hat{C}(x, y, \hat{a}) : \hat{a} \models \hat{\varphi}(\hat{z})\}$ is not almost normal, a contradiction. \Box

I want a direct proof of the converse implication i.e. strong linearity implies weakly local modularity. Suppose non-weakly local modulatity. Construct a 2-dimensional almost normal interpretable family of plane curve.

References

- [A] H.Adler, Explanation of independence, Ph.D thesis, Freiburg, 2005, arXiv:math.LO/0511616 v1, 24 Nov 2005.
- [BV] A.Berenstein and E.Vassiliev, Weakly one-based geometric structures, J.Symbolic Logic 77 (2012), 392-422.
- [LPe] J.Loveys and Y.Peterzil, Linear o-minimal structures, Israel J. Math. 81 (1993), 1-30.
- [Pe] Y.Peterzil, Constructing a group-interval in o-minimal structures, J.Pure Appl.Algebra 94 (1994), 85-100.
- [Pi] A.Pillay, Canonical bases in o-minimal and related structures, (2006) unpublished?
- [PeS] Y.Peterzil and S.Starchenko, A trichotomy theorem for o-minimal structures, Proc. London Math Soc. (3) 77 (1998), 481-523.
- [Y] I.Yoneda, Weak canonical bases and geometrically lower rosiness theory, in preparation, February 2024.

General Education, National Institute of Technology, Gakuendai, Shunan 745-8585, Japan

 $E\text{-}mail\ address{:}\ \mathtt{yoneda@tokuyama.ac.jp}$