Linear dynamics of weighted composition operators
on function spaces over boundaries of homogeneous

trees

Kazuhiro Kawamura *

Department of Mathematics, University of Tsukuba

1 Introduction

The notion of hypercyclic operators has played the central role in the study of infinite
dimensional linear dynamics. A bounded linear operator 7' : X — X on a separable
Banach space X is said to be hypercyclic (or topologically transitive) if it has a dense
orbit, that is, there exists a vector x € X (called a hypercyclic vector) such that
{T"(x) | n > 0} is dense in X. If T' is hypercyclic and moreover the set Per(T') of all
periodic points of T is dense, then T is said to be Devaney chaotic. The existence of
a linear chaotic operator is an infinite dimensional phenomenon: no linear maps on
finite dimensional vector spaces can be hypercyclic. The monographs [7] and [18] are
excellent sources of information.

The class of weighted backward shifts on ¢P(Z) or ¢P(N), (1 < p < c0) is the most
well-studied class of operators and it serves as a testing ground for various aspects
of operator theory. The hypercyclicity of such operators has been characterized in
term of weights of the shifts (cf. [7] and [18]). Recently the results were generalized
to shift operators on sequence spaces over directed trees ([1], [19], [20], [25] and [27]).
Another class of linear operators whose dynamics is well-studied is that of weighted

composition operators on various spaces of analytic functions and on LP-spaces over
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measure spaces [2], [4], [6], [9], [16], [28], etc. Among these papers, the one by Pavone
[28] is most relevant to us. It studies the composition operators on the LP-spaces over
the boundary of an infinite homogeneous tree.

A homogeneous infinite tree is a discrete analogue of a hyperbolic space ([12], [13]).
Each such tree T admits a natural compactification whose boundary, denoted by {2
throughout, is a compact zero-dimensional metrizable space that admits a regular
Borel probability measure p, for which the space LP(Q) := LP(, u) of all complex-
valued LP-functions on € (1 < p < o0) is defined. Every hyperbolic graph auto-
morophism ¢ : T — T induces a homeomorphism ¢ : ) — € which defines the
composition operator C,, : LP(Q2) — LP(Q); f — f o¢. The main theorem of [2§]
states that Cy, is Devaney chaotic whenever ¢ : T' — T is a hyperbolic graph au-
tomorphism. In an attempt to enlarge a class of "natural” examples of hypercyclic
operators, it seems to be natural to consider the class of weighted composition opera-
tors induced by such automorphisms. In [22], [23] the author studied such operators
and the present article reports some of the results in these papers.

Every hyperbolic automorphism ¢ : T" — T of an infinite homogeneour tree T
admits a unique geodesic, called the axis of ¢, that defines two points «a, 3 of the
boundary €2 of T. The induced homeomorphism ¢ :  — €2 has these two points
as the only fixed points, one of which is attracting and the other is repelling. Such
a homeomorphism ¢ and a positive weight v on €) define the weighted composition
operator W, , : LP(§2) — LP(2) given by

(W f)(w) = u(w) - flpw)), we . (1)

The results of [22], [23] refine the main theorem of [28] and demonstrate that hy-
percyclicity and its variants of the operator W, , on L?(€2) have close connection to
the values u(a),u(f). This seems to be a new phenomenon observed in the linear
dynamics-context and similar phenomena are observed for backward shift operators
over directed trees ([21], [24]). For p = oo, the non-seprarability of L>°(Q) leads
us to study corresponding problems for C, 5(€2), the Banach space of all continuous
functions on ) which vanish at the fixed points « and 3, endowed with the supre-
mum norm. The results for C,, 5(€2) are natural counterparts to those for LP-spaces
(p < 00), in the sense that their statements are formally obtained by letting p = oo

in the corresponding results for LP-spaces.



Our proof relies on the standard hypercyclicity criterion and its variants and also

a combinatorial analysis of hyperbolic automorphisms on 7.

2 Preliminaries

Basic references on homogeneous trees are [11], [13] and [17]. For an integer g > 2,
let T' be an infinite homogeneous tree of valency (¢ 4 1): each vertex of T is a vertex
of exactly (¢ + 1) edges. Throughout, we specify a vertex o of T, referred to the
root of T'. Each pair u, v of vertices of T" admits a unique geodesic [u,v]; a sequence
U = ug, Ui, ..., U, = v of mutually distinct vertices of T" such that u; and u;4; are
adjacent for each i = 0,...,n — 1. The number n is called the length of the geodesic
[u,v]. The set V(T') of all vertices of T admits a metric d given by d(v,w) = the length
of the geodesic [v,w], for which the metric space (V(T),d) is a Gromov-hyperbolic
space ([13]).

Definition 2.1. Let T be an infinite homogenous tree of valency (q + 1).

1) A geodesic ray w emanating from a wvertex vy is an infinite sequence
) Y g
(Vo, V1, -+, Un,...) of vertices of T such that for each £ > k > 0, the sub-
sequence Vg, Vg41 - ..,V 1S the geodesic [vg,ve]. In what follows we use the

symbol
W= [V0,V1y..,Up,y...)

to indicate that the geodesic ray w consists of the above vertices.
(2) Let w = [0 = ug,U1,...,Un,...) be a geodesic ray emanating from o. For a
vertex v € V(T'), let m = max{k > 0 | ux € [o,v]}. Then [v,um] U [Umt1,--.)
18 a geodesic ray emanating from v. It is convenient to write the geodesic ray
[V, U] U [tmg1, - - +) as [v,w). In particular, w is also denoted by [o,w).
(8) Let Q) be the set of all geodesic rays emanationg from o. .
(3.1) For a vertex v € V(T), let E(v) and Er(v) be the subsets of Q@ and V(T)
respectively defined by
EWw)={weQ|veo,w)},
Er(v) ={w e V(T) | v € [o,w]}.
(3.2) The set T =V (T)US is topologized as a compactification of the countable
discrete space V(T') so that {E(v) U Er(v) | v € [o,)} forms a neighbor-



hood basis of a point o € Q. The space ) is a compact zero-dimensional
metrizable space, called the boundary of T. Fach E(v) is an open and
closed subset of €).

(4) A regular Borel probability measure p on Q) is defined by

1
(g + DT

(p) Forp € [1,00), let LP(Q) := LP(Q, ).

p(E(v)) = ve V(T). (2)

A geodesic line («, ) between two distinct points «, 5 of Q and the projection map
a8 - 2\ {e, B} = (o, ) are defined as follows.

Definition 2.2. Let Q2 be the boundary of an infinite homogeneous tree T of valencey

(g+ 1), and let o, B be two distinct points of ).

(1) Let myp be the unique point defined by [0, mqg] = [0, a) N[0, B) and let (o, B) =
[mag, @) U[mag, B), called the geodesic line between o and 5.

(2) For a geodesic line («, 8) between o and (3, and for a vertex v € V(T)\ (o, B),
let mop(v) denotes the unique point given by {mas(v)} = (o, B) N [v, ) N [v, 5).

(3) For a point w € Q\ {a,f}, let w = Jo,v1,v9,...). The limit point
lim; o0 map(vi) exists and is denoted by map(w). It is the unique point

satisfying {map(@)} = (0, 8) N (@, @) O (w, B).
Now we introduce the notion of hyperbolic automorphims on trees.

Definition 2.3. A graph automorphism ¢ is said to be hyperbolic with displacement
d(d > 1) if there exists a geodesic line (o, ), called the azis of ¢, such that

o((a, ) = (e, B) and d(p(v),v) =d for each v € (a, ).

Let ¢ : T'— T be a hyperbolic automorphism with axis («, 3). For a geodesic ray
w = [0 = vg,v1,0v2,...) € Q, the sequence [p(vy), p(v1), p(v2),...) is a geodesic ray
emanating from ¢(0). Let m = max{k > 0 | p(vr) € [0, (vo)]}. Then [0, p(vy)] U
[0(Vm+1), ©(Umt2), .. .) is a geodesic ray emanating from o. Let ¢q(w) be the point
of () given by:
pa(w) = [o,0(vm)] U [o(vmi1), o(vmt2), - .-



This defines a homeomorphism, simply denoted by ¢ : {2 — (), that satisfies

o) = a, ¢(8) = B, 5
Ras($()) = P(Tas(@)), w € 2\ {a, 8.

Assume further that the axis («, ) of ¢ contains o and let (o, 8) = {v;}iez with

vg = o. Let d be the displacement of ¢. Then either

©(v;) = vjyq for each i € Z, or (4)
©(v;) = v;_g for each i € Z. (5)

The homeomorphism ¢ : Q@ — Q has «, 8 as the only fixed points. Assuming (4), we
see that « is attracting and f is repelling: for each a € [0, «) and for each b € o, ),

there exists an integer N such that, for each n > N, we have
" (Q\ E(b)) C E(a), ¢ "(2\ E(a)) C E(b). (6)

Also we have

p(E(u) = E(p(u)), ueV(T)\ (o f). (7)

Let @.u be the push-forward measure defined by @,u(A) = u(¢ '(A)). For a

vertex v of T with |m,3(v)| = ¢, one can prove:

e (E()) (B~ (v) = ¢4 o
WEW)  pEQ) | geordzd =1

for some € € {0,1}. Thus the measure @, u is absolutely continuous with respect to

and the Radon-Nikodym derivative satisfies

dp.
dj

< qd u— a.e..

This implies the weighted composition operator W, on L?(€2) or C(?), induced by
a hyperbolic automorphism ¢ on T with displacement d whose axis contains o and
a continuous positive weight u :  — (0,00), is a bounded linear operator whose
operator norm on LP(Q) (resp. on C(Q)) is bounded by ||u|lsq®? (vesp. |ul|oo) (cf.
28)).

Next we recall the hypercyclic criterion and its variants.

Definition 2.4. Let X be a Banach space and let T : X — X be a bounded linear

operator on X.



(1) The operator T is said to be topologically mizing if for each pair U,V of non-
empty open sets of X, there exists a positive integer N such that T~ (U)NV # ()
for each n > N. FEwvery topologically mixzing operator is hypercyclic.

(2) The operator T : X — X on X is said to be frequently hypercyclic if there exists
a vector x € X such that, for each non-empty open subset V' of X, we have

1}@35 card(N(z, V)]\? {1,...,N})
where N(z,V) ={n e N|T"(z) € V}.
(3) A family {T1,...,Ta} of bounded linear operators on X is said to be disjointly

>0

hypercyclic if there exits a vector x € X such that
{(T7" (), ..., Ty (x)) [ n € Z>o}
is dense in ®M, X.

Our proof of the (frequent) hypercyclicity and the Devaney chaoticity is based on

the Hypercyclicity criterion and its variants:

Theorem 2.5. Let T : X — X be a bounded linear operator on a Banach space X.

(1) ([7, Theorem 1.6]) If there exist a dense set D of X, an increasing sequence
{nr} of positive integers and a sequence of functions {Sx : D — X} such that
(1.1) limp_s o0 ||T™ (2)|| = limg— oo [|Sk(v)|| = O for each x,y € D,
(1.2) T™ o Sy = idp,
then T is hypercyclic. If moreover, the whole sequence N can be chosen as the
above sequence {ny}, then T is topologically mizing.
(2) ([7, Thereom 6.10, Theorem 6.18]) If there exist a dense set D of X and a map
S :D — D such that
(2.1) ZT”(&:) and ZS"(JU) are unconditionally convergent for each x € D,

(2.2) To S = idp,
then T 1is frequently hypercyclic and Devaney chaotic.

(3) ([10, Proposition 2.6]). Let {T; |i=1,..., M} be a family of bounded linear
operators on X. Assume that there exist a sequence {ny} of positive integers,
dense subsets Dy,..., Dy of X and a sequence of maps S; i : Dy — X such
that



(3.1) limy_, o0 || T (x0)|| = O for each oy € Dy and for eachi=1,..., M,
(3.2) limg_so0 ||Si k(2i)|| = O for each x; € D; and for eachi=1,..., M,
(8.8) limp oo || 17"* S k(xi)|| =0 for each x; € D; and for eachi,j € {1,..., M}
with j # i, and
(3.4) limp_o0 || T7"* S; k(x;) — ]| = O for each x; € D; and for eachi=1,...
Then {T; |i=1,..., M} is disjointly hypercyclic.

3 Results

Throughout 7' denotes an infinite homogeneous tree of valency (¢ + 1), ¢ > 2, with
the root o, and ) denotes its boundary endowed with the topology and the measure
described in the previous section. Also we assume that p € [1,00). The results of

[22], [23] are motivated by the next theorem.

Theorem 3.1. [28] Let ¢ : T — T be a hyperbolic automorphism of an infinite
homogeneous tree T' of valency (q+1). The composition operator Cy, : LP(2) — LP(2)

18 hypercyclic and Devaney chaotic.

It should be mentioned here that the above theorem is also a consequence of [14,

Theorem M]. Our first result is stated as follows.

Theorem 3.2. [22] Let ¢ : T — T be a hyperbolic automorphism on T with displace-
ment d whose azxis (o, B) contains o and assume that o (resp. ) is the attracting
(resp. the repelling) fized point of the induced homeomorphism ¢ : Q — Q. Also let
u be a continuous positive weight on 2 and let W = W, , : LP(Q) — LP(2) be the

weighted composition operator (1) induced by ¢ and u.

(1) If W is hypercyclic, then we have u(a) > ¢~ 4P and u(B) < ¢¥/P.
(2) Assume that u(a) > ¢~ 4P and u(B) < ¢¥P. Then we have the following.
(2.1) The operator W is topologically mizing, Devaney chaotic and frequently
hypercyclic.
(2.2) There exists a topological embedding e : [0,1]% — LP(S)) such that W o e =
eoa?, where o : [0,1]% — [0,1]% is the shift homeomorphism defined by

o((Tn)nez)i = Tit1, (zn) € [0,1]%

In particular the topological entropy (see [29]) of W is occ.



The statement (2.2) above is inspired by [3, Theorem 10.2]. We observe that the
operator W := ¢~/ PC, induced by a hyperbolic automorphism with displacemet 1
has the operator norm 1 and hence is not hypercyclic. This shows that the hypothesis
? u(a) > ¢~ UP u(B) < ¢/ in (2) of the above theorem may not be weakend to ”
u(a) > ¢~ P u(B) < ¢¥/P

It is shown in [22] that (i) the disjoint hypercyclicity of a family of operators
"generically” leads to a situation, in which the attracting points of the associated
automorphisms are mutually distinct and (ii) the existence of a common hypercyclic
vector of a family of composition operators induced by hyperbolic automorphisms
implies that the set of the associated attracting fixed points has empty interior. The

above (i) leads to the set up of the next result.

Theorem 3.3. [22] Let ¢1,...,on be hyperbolic automorphisms on T with displace-
ments dy. . ..,dy respectively such that the attracting fixed points a, ..., apr are mu-
tually distinct. For i = 1,..., M, let (a;, ;) be the azis of ¢; and assume that

o€ NM (o, Bi). Also let ut, ..., u™ be continuous positive weights such that
u' (o) > ¢ %P and u'(B) < q%'P  oreachi=1,...,M.

Let Wy = Wy, + LP(Q) — LP(Q). Then the family {W; : LP(Q) — LP(Q) | i =
1,... M} is disjointly hypercyclic.

A similar (but more technical) result motivated by (ii) is proved in [23].

For p = oo, the situation is slightly different. The space L>°(2) fails to be separable
and any operator on L>°({2) cannot be hypercyclic, which leads us to study the space
C(Q) instead. Since the composition operator Cy, : C(2) — C(£2) has norm one for
each homeomorphism ¢ on €2, any hypercyclic weighted composition operator on a
closed subspace of C(€2) must have nontrivial weight. Recall that for points «, 8 of 2,
Co.5(82) denotes the space of continuous functions on 2 that vanish on {a, 8}. All of
the statement (2) of the next theorem are obtained formally from the corresponding

statement of Theorem 3.2 by letting p = co.

Theorem 3.4. [22] Let ¢ : T — T be a hyperbolic automorphism whose azis (c, )
contains o. Assume that o (resp. [3) is the attracting (resp. the repelling) fixed point
of o : Q= Q. Let u be a continuous positive weight on € and let W = W, , be the

weighted composition operator (1) induced by u and .



(1) The operator W : C(2) — C(Q) is not hypercyclic.
(2) For the operator W : Co, 3(Q2) = Cy,5(Q2), we have the following:
(2.1) If W is hypercyclic, then we have u(a) > 1 and u(f) < 1.
(2.2) Assume that u(a) > 1 and u(5) < 1. Then we have the following.
(2.2.1) The operator W is topologically mixing, Devaney chaotic and frequently
hypercyclic.
(2.2.2) There ezists a topological embedding e : [0,1]% — C4 5(Q) such that
Woe=ecooc?, where o:[0,1]% — [0,1] is the shift homeomorphism

of Theorem 3.2, and W has the infinite topological entropy.

The composition opertor C, : Cy 3(Q2) = Cq,5(€2) induced by a hyperbolic auto-
morphism ¢ which has o, 8 € () as fixed points has the operator norm land thus is
not hypercyclic. Hence the hypothesis "u(a) > 1 > u(3)” in (2.2) cannot be weakend
to "u(a) > 1 > u(p).”

A result that corresponds to Theorem 3.3 for C(Q) is also proved in [22].

4 Remark on invariant measure

The notion of frequent hypercyclicity is motivated by ergodic theory and it is natural
to ask as to whether a frequently hypercyclic bounded linear opeartor 7' : X — X on
a separable Banach space X admits an invariant (finite) measure v on X so that the
measure dynamics (7', X, v) is ergodic. The next theorem provides us with a sufficient

condition for the existence of such a measure. See also [5] for a stronger result.

Theorem 4.1. [26] Let T : X — X be a bounded linear operator on a separable
Banach space X. Assume that there exist a dense set D of X and a sequence of maps
{S,, : D — X | n>1} such that

(1) Z T"(z) and Z Sn(x) are unconditionally convergent for each x € D,
(2) T" 0 S,, =idp and T™ o S,, = Sy, for eachpair of integers n,m with n > m.
Then there exists a T-invariant Borel probability measure v on X such that

(3) v(U) > 0 for each nonempty open subset U of X, and
(4) the dynamics (T, X,v) is strongly mizing



The conclusion of the above theorem implies, via the Birkoff ergodic theorem [29],
that T' is frequently hypercyclic. The proofs of Theorem 3.1 (2.1) and Theorem 3.3
(2.2.1) imply the next corollary.

Corollary 4.2. Let ¢ : T — T be a hyperbolic automorphism on T with displacement
d whose azis (o, ) contains o and assume that o (resp. ) is the attracting (resp.
the repelling) fixed point of the induced homeomorphism ¢ : Q — Q. Also let u be
a continuous positive weight on ) and let W be the weighted composition operator
on LP(Q) (resp. Cu () induced by ¢ and u. If u(a) > ¢~ 4P and u(B) < q¥/?
(resp. u(a) > Lu(B) < 1), then LP(Q) (resp. Cq () admits a W-invariant
Borel probability measure v such that (W, LP(Q2),v) (resp. (W, Cq,5(2),v)) is strongly

MiTIng.

The study of measure theoretic dynamics of the operator W above is a subject of

future study.
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