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Two-faced independences are independence relations for pairs of
noncommutative random variables, such as bifree independence, which
models the relation between left and right regular representation of
generators of the free group in the canonical tracial state. Around
2000, in works of Speicher, Ben Ghorbal & Schiirmann, and Muraki, a
complete classification of “single-faced” independences was obtained:
the only independences in this case are tensor, free, Boolean, mono-
tone and anti-monotone independence. I report on the current status
of the classification program for two-faced independences.

1 Universal products and independences

Given a noncommutative probability space, i.e., a pair (A, @)
which consists of a unital x-algebra A and a state &: A — C,
we call the numbers ®(a*) the moments of a selfadjoint element
a = a* € A; under suitable technical assumptions, the commuta-
tive x-algebra generated by a can be identified with an algebra of
functions on a classical probability space such that the restriction
of ® becomes the classical expectation. For aq,as € A, expres-
sions of the form ®(a;,a;, . ..a;,) are called mized moments. In
many noncommutative situations, there is a specific structure
which allows to compute all mixed moments from the moments
of a; and as and this insight led to studying the idea of “non-
commutative independences”. Central limit theorems for such
independences hold under very general conditions (see [1]) and
rich theories can be developed with surprising applications, for
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example in spectral analysis of graphs or random matrix theory,
see [9, 16] or [12], respectively, and references therein.

Classical stochastic independence can be described by the slo-
gan “joint distribution = product distribution”.! A natural idea
when looking for independences in noncommutative probability
is therefore to redefine the terms “joint distribution” and “prod-
uct distribution” in a general (x-)algebraic context and use the
same slogan to get a corresponding noncommutative indepen-
dence. Based on this idea, Ben Ghorbal and Schiirmann axioma-
tized noncommutative independences in [2| and proved that they
correspond exactly to Speicher’s “universal products” in [17]. Tt
turned out that the number of noncommutative independences in
the sense of [2] is finite and small. Under the assumption of sym-
metry, Speicher showed that there are only three such indepen-
dences, namely tensor, free and Boolean [17, Thm. 2]. Muraki
extended Ben Ghorbal and Schiirmann’s framework to cover also
non-symmetric independences and proved that, without symme-
try, monotone and antimonotone independence are the only addi-
tional examples [13, 14]. About 10 years later, Muraki presented
a variant of his result where he replaces a certain normalizabil-
ity condition by a positivity condition, leading to a simpler and
more conceptual proof [15]. Assuming neither normalizability
nor positivity, all independences can be rescaled, and Boolean
independence even allows for a continuous 2-parameter defor-
mation [6]. We refer to results of the mentioned kind as classi-
fication of independences.

More independences can only be found by loosening the ax-
ioms of Ben Ghorbal and Schiirmann. A crucial (and quite
restrictive) axiom is the axiom of universality: independence
should be preserved under certain morphisms. Ben Ghorbal and
Schiirmann work with the category of (complex associative) al-
gebras. A newer development, started by Voiculescu’s study of

More precisely, random variables X5 : Q — FEj, (i € I from some, for sake of sim-
plicity finite, index set I) defined on a classical probability space (2, 3, P) with values in
measurable spaces (E;, &;) are independent if and only of the joint distribution P(x;.ie1)
equals the product distribution [];c; Px,, where both probability measures are defined
with respect to the product o-algebra Hz‘el E;.



bifreeness [18], is to consider the category of multi-faced algebras
instead, i.e., algebras B with a given free product decomposition
B = | |,. B* of subalgebras B* C B called faces. An F-faced
algebra with an involution % which restricts to involutions of the
faces B° is called an F-faced x-algebra. In these notes, F is al-
ways the two-element set F = {o, o} and we will write two-faced
instead of F-faced.

One subtlety deserves attention. The algebras considered so
far are not necessarily unital. When we need a unit, we work
with the unitization. This is mainly important in the context of
positivity.

A two-faced homomorphism between two-faced algebras A, B
is an algebra homomorphism j: A — B with j(A*) C B* for
e € F. The free product | | B; of two-faced algebras B; is a
two-faced algebra with faces (| | B;)* = || B; C | | B:.

Given any product operation ®, which takes as input linear
functionals ¢; on two-faced algebras B; and produces as out-
put a linear functional () ¢; on | | B;, we say that two-faced
homomorphisms j;: B; — A are -independent w.r.t. a linear
functional ®: A — C if

Do |_|ji = @(‘b 0 Ji)-

The definition stems from the interpretation of the left hand side
as an analogue of joint distribution and of the right hand side as
an analogue of a product distribution in classical probability.

Properties of the independence are reflected by properties of
the corresponding product operation. The following definition (a
special case of w.a.u.-products as defined in [11], see [3, Def. 3.3
and Rem. 3.4]) has proved fruitful.

Definition 1.1. A two-faced universal product is a product op-
eration which assigns to each pair (1, @2) of linear functionals on
two-faced algebras By, Bs a linear functional ¢1 ® py on By LI By
with the following properties.

unitality: 00 =9 =9 ®0 for all ¢: B — C, B an F-faced
algebra; 0 € {0} the trivial functional



associativity: (p10p2)©ps = 1O (p2Gys) forall ;2 B; — C,
B; two-faced algebras

universality: (o1 © @2) o (jiUj2) = (¢1 0 1) © (p2 0 jz) for
all ¢;: B; — C, j;: A; — B; two-faced algebra homomor-
phisms

We define two more properties which an two-faced universal
product may have or not.

symmetry: o1 © gy = 3 © o for all p;: B; — C, B; two-faced
algebras

positivity: 1 @ 1,1 D s > 0 = 1 (p1 ©® ¢o) > 0 for
all ¢;: B; — C, B; two-faced x-algebras; 1 @ ¢ denotes
the unital extension of a linear functional ¢ on B to the
unitization of B

Every single-faced universal product © can trivially be re-
garded as a two-faced universal product by “ignoring” the two-
faced structure. Also, every two-faced universal product defines
two single-faced universal products by restricting to the two
faces. These restrictions usually give the name of a two-faced
product (e.g., the bifree product restricts to the free product
on both faces), but be aware it is not at all clear a priori how
many different two-faced universal products exist with the same
restrictions (if any).

Several non-trivial examples of two-faced universal products
besides bifreeness have been found, but in contrast with the
single-faced setting, we do not have a complete classification,
not even if we restrict to positive and symmetric two-faced uni-
versal products. These notes deal with partial results obtained
so far in this direction.



2 Highest coefficients of positive and sym-

metric two-faced universal products

In this section we summarize the main results of [7], in which
positive symmetric 2-faced universal products are almost clas-
sified by studying their associated moment-cumulant relations.
The crucial concept is that of highest coefficients, which we now
recall.

A set partition of [n] :={1,...,n}isaset # = {f,..., Bk} of
nonempty pairwise disjoint subsets () # 5; C [n] with [n] = | 8.
The elements of [n] are called legs of the partition .

A finite word f € {o,e}" is called a face structure and a finite
word b € [k]" for some k € N is called a block structure.

We denote by

e P(f) the collection of all set partitions of [n], for each face
structure f

e P the disjoint union of all P(f); formally, an element of P
can be seen as a pair (m,f) where 7 is a set partition of [n]
and f € F" is a face structure.

Note that the set partitions in P(f) do not actually depend on
the face structure, but we still need to distinguish between them.
When we visualize partitions by their arc-diagrams in the usual
way, this is done by coloring the nodes, for example

Lo o

respectively correspond to

{{134},{25}},{{13}, {25}, {4}} € P(oeeoce).

We identify a partition with its arc diagram, e.g., m_l =
{{134},{25}} € P(ceece).

With a pair (f,b) of a face structure f and a block structure
b of the same length n, we associate a partition ©f € P(f)
with blocks 8; := {{ € [n] : b({) = i}. Conversely, given any
m=A{p1,...,0k} € P (with blocks labeled 1, ..., k), we denote f;
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its face structure, such that = € P(f;) and b, its block structure,
i.e., the word such that b, (¢) = i whenever ¢ € 3;.

Definition 2.1. Let ® be a positive two-faced universal product.
The highest coefficients of ® are the unique coefficients a(m), m €
P, such that for all ay ...a, € ByU...UBy,as € BfUBjU...U
B; U B; with

o f. € {o,¢}" encoding face membership,

e b, € [k]" encoding block membership,

le., a; € B&r((% for all ¢ € [n], the expansion of the univer-

sal product according to the ‘Central Coefficient Theorem’ [11,
Thm. 4.2] takes the form

©1 OO pplar ... ay)

_>
= a(m) - 1 H ag | ... Pk H 7]
b(£)=1 b(0)=k
+ nonlinear terms,
where linearity is meant with respect to ¢1, ..., ©x.

Example 2.2. If, in the notation of the previous definition,
1 ® pa(a1azas) = Ap1(aras)pa(az) + pei(ar)pi(as)ea(as)

with 7 = [ ], B = {1,3}, and py = {2} (i.e., a1 € Bj,ay €
B3, a3 € By), then a(r) = A.

It follows from Manzel and Schiirmann’s cumulant theory for
universal products that the highest coefficients are enough to
determine the universal product completely [11, Thm. 7.2]. The
simplified idea is that (in the symmetric case!) independence
is characterized by vanishing of mixed cumulants, and in the
definition of cumulants, which are some sort of “linearization”,
only the highest coefficients of the universal product appear.

While a universal product is determined by its highest coef-
ficients, it remained a sort of mystery what exactly a family of



numbers has to fulfill in order be the highest coefficients of some
universal product. The following results shed some light on this
problem.

Theorem 2.3. Let ® be a positive and symmetric two-faced uni-
versal product. Then its highest coefficients fulfill:

(i) a(l) =1 (the face is arbitrary).
(i) a(l 1) =1 (both faces are arbitrary).
(iii) ar = Oed(r), where the reduced partition red(m) is obtained

from w by merging neighboring legs of the same face in the
same block into only one leg of that face in that block, e.q.,

( m )red - l_l )
(iv) Suppose m € P(f) has blocks (1, o with neighboring legs in
the same face, i.e. there exist i € (1, j € Po, |i — j| = 1,
f(i) =f£(j). Then

O = Qng _p, * ¥{B1,B2}

where 7g, _g, is obtained from m by replacing the two sepa-
rate blocks 1, Bo by their union B U (s, e.qg.,
(l Y 1){1,3}v{2,5} =L
(V) ar = a, whenever w and o only differ in the faces of first
or last leg. (We therefore will often not color the first and
last leg at all.)

(Vi) az = @, where T denotes the mirror image of w, i.e.,
bz({) =b,(n+1—1¥) and £-(¢) =f,(n+1—-4), e.g.,

<m¢l)=l¢m-

Conversely, every family of complex numbers (o) ep which ful-

fills these properties, is the family of highest coefficients of a
(automatically unique) symmetric 2-faced universal product.



This theorem tells us in particular, how one can calculate high-
est coefficients of complicated partitions from highest coefficients
of simpler partitions. Indeed, it turns out that, using the prop-
erties (i) to (vi), all highest coefficients are determined by the
following six basic coefficients for nestings and crossings (the
faces for the first and last leg are arbitrary):

vo=a(l11), w=a(l), va=a(lal)
&=a(rfil), &=o(rfil) & =o(rfal)

Furthermore, it follows that these basic coefficients must fulfill
the following compatibility conditions:

o vy, Ve, &0, & € {0, 1}, Voo, &oo € {O}UT
o/, =0 = & =Vee =60 =0

oV, =0 = & =Ve=&.=0

@ Uy F Ew = & =6 =0

¢ =00ré& =0 = vee=00r&.=0

This information is actually enough to determine all families
of coefficients which fulfill properties (i) to (vi). The result is
described by Figure 1: the Hasse diagram for the set of sym-
metric universal products whose highest coefficients fulfill prop-
erties (i) to (vi) with respect to the pre-order ®; < ©y <=
Vaep|ai(m)| < |az(m)]. We can conclude:

Theorem 2.4. Fvery positive and symmetric universal product
1s one of the products in Figure 1.

It should be emphasized that this theorem does not state that
all of the products in Figure 1 are actually positive!

3 Representing universal products on tensor

or free product of Hilbert spaces

In this section, we describe results of [5] which prove positivity
of all but four of the universal products in Figure 1, with the
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1: Hasse diagram of 2-faced symmetric universal products with properties
(i) to (vi) for the pre-order 1 < Oy <= Vyeplaa(m)| < |lag(m)].

exception of the free-tensor product #, the tensor-free product
¢, the pure tensor product @ewe, and the pure free product #eue.
Positivity in these exceptional cases remains an open problem
for now. In [5] also non-symmetric universal products are con-
sidered, but for these notes we focus on the symmetric case.
Let us recall the construction of the bifree product of linear
functionals described in [18, Prop. 2.9 and Cor. 2.10 b]. For every
linear functional ¢: A — C on an algebra (the role of unitality
shall not be discussed here) one can find a vector space H with
a decomposition H = CQ & H where Q is a non-zero vector and
H a complementary subspace such that p(a)Q = Por(-)Q. If ¢
(or its unital extension 1 @ @) is a state, one can use the GNS
representation of ¢ (or of 1@ ) and write ¢ = (2, w(+)€2); in this



case, T is a *-representation, H is the orthogonal complement of
the unit vector 2, and F, is the orthogonal projection onto CSQ2.
We will use the pre-Hilbert space notation also in the pure linear
algebra setting, i.c., (Q, AQ & h)) :== X for A € C,h € H =: Q.
The free product of vector spaces H; with such a decomposition,
H;, =CQ, ® lﬁ[Z is defined as

HioxHy=Coo P H,w-- oM.,

n>1
e1#...F#€En

where the direct sum runs over all finite alternating sequences in
{1,2}*. This space can be written in different ways as a tensor
product with tensor factors H;:

H1 * H2 - H1 @H(Q) - HQ@H(l) = H(Q) ®H1 - H(l) ®H2

with
Hea. )y =CQp. )@ @ H,®---®H.,
n>
2:5172..1.7%”

under the obvious identifications and with analogous definitions
of Hy.y, H( 2, and H(_1). Now, if ¢; = (Q;, m;(-)€;) are linear
functionals on algebras A; described by representations 7;: A; —
L(H;) with representation spaces H; = CQ; © FIZ-, then their free
product is defined as

_>
Q1 % g 1= (¥ mo()2)
for the representation m; ? mo: Ay LAy — L(H; % Hy) given by

m(a) ®ide.), a€ A,
’7T2(CL) & ld(l), a < AQ.

ﬁ
¥

T 7T2(CL) =

We say that the free product of linear functionals is represented
on the free product of representation spaces. By symmetry of the

construction, one also has

%
V1 % o = (Q,mp %k ma(-)Q)
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for the representation my ; mo: Ay U Ay — L(H; % Hy) given by

id(. o) ®m(a), a€ A,
id(_1) ® ma(a), a€ A,

T <;7’@(@) =

So we have two different ways to represent the free product of
linear functionals on the free product of representation spaces.
Nothing keeps us from combining those products of representa-
tions into one product of representations of two-faced algebras,
i.e., for representations m;: A; — L(H;) of two-faced algebras A;,

we define

m(a) ®idp.y, a € AS,
7T1;>7T2(a): 1( ) ' (2..) 1
N m(a) ®ida.y, a€ A,

m & ma(a) = .
. ld(”_g) X 7T1(a), a € AI,

Tk m(a) = <
id(.1) ®ma(a), ae€ A,

\

i.e., whether the operators act from the left or from the right
depends on the face. This product of representations defines the
bifree product of linear functionals

P1 % P9 = (Q,m % ma(+)2).

It is not hard too hard to show that this is a symmetric universal
product and it is evidently positive, because if 1 & ¢, and 16 ¢,
are states on the unitalizations of x-algebras, then one can choose
m, Ty as their GNS representations, and it follows that % Ty
is a x-representation.

The products associated with Liu’s free-Boolean independence
[10] or with bi-monotone independence of type II [8, 4] (a non-
symmetric universal product) were obtained in a similar manner,
which led to define in [5] universal products of representations in
such a way that they give rise to universal products of linear
functionals on multi-faced algebras as sketched in the example
of bifreeness. In particular all universal products obtained that

way are evidently positive.
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We have to distinguish whether the representation space of
the product representation m; ® 7, is the free product of repre-
sentation spaces (as in the example of bifreeness) or the tensor
product of representation spaces. In both cases, all universal
products of linear functionals on two-faced algebras that can be
obtained through the indicated construction are determined in
[5]. A key observation is that it is possible to deform expres-
sions of the form m(a) ® id in a way that is compatible with
the construction of universal products of linear functionals from
universal products of representations.

Observation 3.1. For H = CQOH , one can decompose a linear
operator 1" € L(H) as a block operator matrix

(@) L(CQ) L(H,CQ)\
r= (t 7 ) © (L(CQ,EI) L(H) ) = L(H).

With respect to that decomposition, we define

_ (7 7({’)*)
v vt T

for y € T. Then T' +— T, is a (*-)homomorphism and one can
replace expressions 7(a) ® id by deformed versions

7(a) ® Po+m(a)y, ® Por

in the constructions of the free, bifree, or tensor product (exactly
which complementary space of 2 is meant by Q+ depends on the
context).

If we construct a single-faced universal product, the product
of linear functionals turns out to be independent of the choice
of deformation parameters, but for two-faced independences, the
choice of deformation parameters can have an influence. In prin-
ciple, the deformation parameters can be chosen differently for
the first and second factor (e.g., for m ® id(2.) and m ®id..)
when deforming the bifree product), but as it turns out, for
symmetric universal products it is sufficient that the deforma-
tion parameters only depend on the face, but not on whether one
deals with the first or second factor. This yields us the following:

12



e The tensor product of linear functionals can be represented
on the tensor product of representation spaces with

7T1(CL>®PQ2+(7Tl(a>)»Y®PQ§_, CLEAl
T &y ma(a) =
PQl ®7TQ(CL)+PQIL ®(7TQ(CL))7, a € A2

e The free product of linear functionals can be represented on
the free product of representation spaces with

-

1 *771'2(61/)

7'('1(0,) ® PQ(2.4.) + (7T1(CL>>’Y ® Pﬁé , ac Alv
7'('2(&) & PQ(L.A) + (7T2(CL))7 & PQ(ll , a € AQ.

or with
F
T %k v 7T2(a)
PQ(H.z) ® 771(@> + PQ(L ® (Wl(a»'yu ac A,

)
Pﬂ(..&) ®ma(a) + Por  ® (m(a))y, a€ A,.

1)

e The Boolean product of linear functionals can be repre-
sented on the tensor product of representation spaces or on
the free product of representation spaces with

m(a) B0y, a€A

1 <>7T2(CL) = 1( ) Hi !

WQ(&)EBOHQL, CLEAQ

with respect to the canonical embeddings H; — H; * H, or

H; — H; ® H,, respectively (we use the same symbol < in

both cases).

Theorem 3.2. On the tensor or free product of representation

spaces, one can represent two-faced symmetric universal prod-

ucts as indicated in Tables 1 and 2. In particular, except for

possibly the free-tensor product ¥%, the tensor-free product g, the

pure tensor product -, and the pure free product %, all other

universal products in Figure 1 are positive, and the four excep-

tional products can neither be represented on the tensor product

nor on the free product of representation spaces.
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face 2 (o) tensor Boolean
face 1 (o) Ry o
tensor deformed tensor tensor-Boolean
5 3
Boolean Boolean-tensor Boolean (trivially 2-faced)
&
© % 8

(71,72 €T, ¢ =172)

7% 1: two-faced positive and symmetric universal products of linear func-

tionals on the tensor product of representation spaces with given universal

products of representations for the two faces

face 2 (o) left free right free Boolean
face 1 (o) ;)72 (>F,72 o
left free deformed free deformed bifree free-Boolean
— —
= ¢ *
¥, z,s <;’<_<< 3
right free deformed bifree deformed free free-Boolean
— —
ho *
*qy %C ?{4 &
Boolean Boolean-free Boolean-free Boolean (trivially 2-faced)
& <&
<o * * 8

(¢ 7,72 €T, ¢ =7172)

7 2: two-faced positive and symmetric universal products of linear func-
tionals on the free product of representation spaces with given universal

products of representations for the two faces
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