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Abstract

This is a preliminary report of our recent work [5]. We shall examine two parameterized deforma-
tion, namely (g, s)-deformation of the classical Poisson random variable of parameter A > 0 on the
(g, s)-Fock space. We shall give the recurrence formula of the orthogonal polynomials associated with
the (g, s)-Poisson distribution. Moreover, we shall announce a moment formula of the distribution
from the view point of the set partition statistics. This formula gives us a very nice combinatorial
interpretation to deformation parameters.

1 Deformed Poisson

From the probabilistic point of view, the Poisson distribution is one of important distributions much
the same as Gaussian. Indeed, using Gaussian and Poisson distributions, one can construct arbitrary
infinitely divisible distributions via Lévy-Khintchine representation. In noncommutative probabilistic
framework on the Boson Fock space, Hudson-Parthasarathy [15] and Schiirmann [18] showed that by
adding an appropriate gauge operator, the Poisson random variable can be realized on the Boson Fock
space. In [9], Bozejko-Speicher constructed the g-Fock space by deforming the inner product of free (full)
Fock space with the positive definite function on the symmetric group. The corresponding g¢-creation
and annihilation operators satisfy the g-commutation relation and the ¢-Gaussian operator (random
variable) gives rise to the g-Gaussian distribution, which is the orthogonalizing probability measures for
the Rogers’ ¢-Hermite polynomials under the appropriate rescaling. The corresponding Poisson operator
(random variables) on Boson and g-Fock spaces can be realized by adopting the number and the g-number
operators as the gauge part, respectively. The ¢-Poisson distribution is the orthogonalizing probability
measure for the ¢-Charlier polynomials of Saitoh-Yoshida type [19][20] (see also [1]).

For later discussions in Sections 2 and 3, we need following things. In Section 1.1, we shall quickly
prepare two parameterized deformation, namely, (g, s)-Fock space, creation, annihilation, intermediate,
and scalar operators, which follows the technique in the sense of [4][11]. In Section 1.2, we shall define
the (g, s)-Poisson type operator (random variable) and the corresponding (g, s)-Poisson distribution of
a parameter A > 0. The (g, s)-Poisson is the orthogonalizing probability measure of the orthogonal
polynomials in (1.6) regarded as a generalization of ¢-Charlier polynomials. It is because the following
known examples are included: One is of Saitoh-Yoshida type if s = 1 and the other is of Al-Salam-Carlitz
type if s = ¢ in [16] (see also [2][12]). It is easy to see that the classical Charlier polynomials [12] can be
recovered if s =1 and ¢ — 1. Moreover, one can obtain orthogonal polynomials of the free Poisson [23]
if s =1,q = 0 and of the Boolean Poisson [22] if ¢ = 0,s — 0.



1.1 Deformed Fock Space and Operator

Let 2 be a real Hilbert space equipped with the inner product (-|-), and 2 be a distinguished unit
vector, the so-called vacuum vector. We denote by Fgn () the set of all the finite linear combinations
of the elementary vectors £1® -+ ®&, € #®" (n=0,1,2,...), where S#%° = C{2 as convention.

The g-deformed Fock space (simply called ¢-Fock space) was introduced in [9], which gives an inter-
polation between the Boson (symmetric) and the Fermion (anti-symmetric) Fock spaces and, especially,
the case ¢ = 0 of which yields the canonical model in the free probability theory (See [23], for instance).

Let us now recall the minimum about the (g, s)-deformed Fock space obtained by the weighted ¢-
deformed Fock space with the weight sequences 7,, = s"~1 (n > 1) in [4][11].

For —1 < ¢ < 1and 0 < s <1, we introduce the new inner product ( . )( ) on Fin(H2) by

q;s

n(n—1) i
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where &,, is the n-th symmetric group of permutations and i(o) is the number of inversions of the
permutation o € &,, defined by

i(o)=#{(i,j)|1<i<j<n,o@i)>a())}

Since the positivity of the inner product (- | - ) is guaranteed (see [10] [11]), the following definitions

(g,9)
are allowed:

Definition 1.1. The (g, s)-deformed Fock space is (simply called the (q,s)-Fock space) F(q.s) () the
completion of Fgn(.7#) with respect to the inner product ( - | - ) (.5)°
Definition 1.2. Given the vector £ € S, the (q, s)-creation operator a](Lq S)(5) is defined by the canonical

left creation,

a

L@ 2=¢

The (q, s)-annihilation operator a(, () is defined by the adjoint operator of azq 5 (&) with respect to the
inner product ( - | - )(q,s)’ that is, a4+ (§) = (azqys) (5)) .

The action of the (g, s)-annihilation operator on the elementary vectors is a direct consequence of the
above definition.

Proposition 1.3. The (q, s)-annihilation operator a(q s (&) acts on the elementary vectors as follows:

a(q,s) (5) 2= Oa a(q,s) (6) 51 = <€|€1> ‘Qa

g0 () (E1® ®&)=s""> FHEw b ® @@, N2, (1.2)
k=1
where §v;€ means that & should be deleted from the tensor product.
Moreover, let us recall other special operators on F4 s (H).
Definition 1.4. (1) The scalar operator ks is defined by
ks 2 =12,
ks (G008 00+ 008) = "6 0 & 0000 &, n> 1 (1.3)

(2) The intermediate operator n, is defined by
ng 2 =0,
ng((L @& &) =ML ®ER- 06, n>1 (1.4)
where the g-integer, [n], for n € NU {0}, is given by

1—qg"
[n], = 17qq =14q+-+q" " with [0], = 0.




We remark that the scalar operator ks can be interpreted as a deformation of the identity operator
I = k; (a contraction for s € (0,1)) and the intermediate operator n, has the eigenvalue [n], for the
eigenspace J7%".

Proposition 1.5. The (q, s)-creation and the (q, s)-annihilation operators satisfy the following deformed
commutation relation,

Q(q,s) (5) an,s) (77) —4gs a](Lq,S) (77) Q(q,s) (5) = <§|77> ks, fa ne H.

Proof. One can get this from Proposition 3.2 in [4] with 7,, = s"~! for n > 1. O

Let us consider the vacuum state ¢ for bounded operators on the (g, s)-Fock space F, ) () as

p(b) = (b2] Q) b€ B(Fiy,5(H)),

(g:8)?

which is called the vacuum expectation of b. One can employ (B (f(qys)(t%” )), go) as the noncommutative
probability space, on which the model of the (g, s)-deformed Poisson type operator (random variable)
will be discussed.

Remark 1.6. Let us denote the deformation in the sense of Blitvié [7] by (g,t)p; in this paper to avoid
confusions in notation with our (g, s)-deformation. One can see that the (¢/t,t)-Fock space in our language
is equivalent to the (g, t)pe-Fock space. See [4].

1.2 Deformed Poisson Type Operator

From now on, let us treat the (g, s)-Fock space of one-mode case with the unit base vector £. The (g, s)-

creation az%s)(f) and the (g, s)-annihilation a(, ) (§) operators are simply denoted by a](Lq)S) and a(q,s),

respectively. In case of one-mode, the operators a](Lq sy O(q,s); ks, and ng, act on the elementary vectors
immediately obtained from Definitions in Section 1.1 as follows.

Lemma 1.7. For s € (0,1] and ¢ € (—1,1),

m—1 ®(m—1) >1
i @m _ +®(m+1) @m _ S [m]qf , m=1,
(I(q)s) § - 5 , m Z 07 a(qﬁs) g - {0, m = O7
k §®m =gm g@m m>0 n §®m _ [m]qé"@m’ m Z 15
s ; = Y, q O, m = 0.

From Proposition 1.5, one has immediately the commutation relation,

T T —
U(g,s) Ug,s) — (45)0(q ) 0q,8) = K-
Moreover, by direct commutations, one can get

Proposition 1.8. For g € (—1,1) and s € (0,1], the following commutation relations hold:

{ ksa](Lq,S) =9 (“ImkS) ’

5 (ksa(g,s)) = a(qs)ks-

(1) s-commutativity:

(2) Commutativity:
ksng = ngks.

3)

A(q,s)Nq — (qs)nqa(q,s) =(1- S)nq +sI) Q(q,s)>
nqazqys) - (qs)a}tq’s)nq =((1—8)ng+sI) azqys).



Definition 1.9. For A > 0, let us define the bounded self-adjoint operator pg\q’s) on the (g, s)-Fock space

of one-mode by

p\" =n, + VA (azqys) + a(w)) + ks (1.5)

This is called the (g, s)-Poisson type operator (random variable) on a noncommutative probability space

(B(F(q,)(#£)),¢). The probability distribution of pg\q’s) with respect to the vacuum expectation is called

s)

the (g, s)-Poisson distribution of parameter A and denoted by Hg\q’ in this paper.

Theorem 1.10 ([5]). The distribution H(Aq’s) is the orthogonalizing probability measure for the sequence

of orthogonal polynomials {Cﬁlq’s)()\;x)} determined by the following recurrence relation:

Ci ey =1, O (\z) =2 — A
YV (Nx) = (x — (A" + [n]y) C¥) (A;z) — As"[n], C2) (Niz), n> 1. (1.6)

n

Remark 1.11. (1) One can consider the orthogonal polynomials given in (1.6) as a generalization of
g-Charlier polynomials because the following known examples are included: One is of Saitoh-Yoshida
type if s = 1 appeared in [19][20] (see also [1]) and the other is of Al-Salam-Carlitz type if s = q. See
[2][12][16]. It is easy to see that the classical Charlier polynomials [12] can be recovered if s = 1 and
g — 1. Moreover, one can obtain orthogonal polynomials of the free Poisson [23] if s = 1,¢ = 0 and of
the Boolean Poisson [22] if ¢ = 0,s — 0.

(2) In [5], we mention and compare the (g, t) g¢-Poisson operator of Ejsmont type in [14] and the recurrence
formula for the orthogonal polynomials of the (g,)pe-Poisson distribution with (g/t,t)-Poisson in this
paper. Since the scalar operator k; is not considered in [14], the (g,t)p¢-Poisson operator of Ejsmont
type is not regarded as a deformation of Al-Salam-Carlitz type [16] (see also [2][12]). Furthermore, («, q)-
Poisson operators of type B have been introduced by Asai-Yoshida [3] and Ejsmont [14], independently.
Strictly speaking, for o # 0, the definition of the conservation term in [3] is different from that in [14].
In addition, these two Poisson operators of type B do not contain the scalar operator ks and hence are
not of Al-Salam-Carlitz type. Therefore, the (g, s)-Poisson type operator and distribution treated in this
paper are essentially different from those of type B in [3][14].

2 Set Partition and Statistics

In our moment formula, the set partitions will be employed as combinatorial objects. We shall quickly
recall the definition of set partitions and introduce some partition statistics to state our moment formula
in Theorem 3.3.

Definition 2.1. For the set [n] = {1,2,...,n}, a partition of [n] is a collection m = {By, Ba, ..., By}
of non-empty disjoint subsets of [n] which are called blocks and whose union is [n]. For a block B, we
denote by |B| the size of the block B, that is, the number of the elements in the block B. A block B will
be called singleton if |B| = 1.

Let P(n) denote the set of all partitions of [n] = {1,2,...,n}. Let # € P(n) be a partition. A
quadruple (a, b, ¢, d) of elements in [n] is said to be crossing of 7 if the elements «a, ¢ are in some block of
7 and b, d are in another block of 7. For elements e, f € [n], we say that f follows e in 7 if e < f, e and
f belong to the same block of 7, and there is no element of this block in the interval [e, f].

Definition 2.2. We define a restricted crossing to be a crossing (a, b, ¢, d) such that ¢ follows a and d
follows b. The partition statistics re(w), the number of restricted crossings of m, counts the restricted
crossings in the partition .

The restricted crossings have a natural interpretation in the graphic line representation of partitions
as described, for example, in [6][21]. If the block B is not singleton (i.e. |B| > 2), then we write
B = {b1,ba,...,bp}. Thatis, bj; follows b; (j =1,2,...,|B|—1), and put b;’s on the horizontal axis.
We will join the points b; and b;;; by an arc above the horizontal axis. Then every restricted crossing
appears by a pair of crossing arcs.

For our combinatorial formula, we shall introduce another partition statistics related to the last
(maximum) elements of the blocks. For a block C' of the partition @ € P(n) we consider the first



(minimum) element fe and the last (maximum) element £ in the block C. In case of singleton it means
fc = Lc. For an element a € [n], we say that the block C' covers a if a does not belong to the block C
but a is included in the interval [fc, {c].

Definition 2.3. Let B be a block of a partition 7. Then dl(B) counts the block that covers ¢p (the
last element of B), which is called the depth of the block B by the last element. For a partition 7, the
statistics td(m) is defined by
td(m) = Y _ di(B),
Ber
which we call the total depth of the blocks by the last elements.

Example 2.4. Let us consider a partition 7 = {{1,3,4,7},{2,5,10},{6,9},{8}} € P(10) and put
By ={1,3,4,7}, By = {2,5,10}, B3 = {6,9}, and B, = {8}. Then one can see rc(m) = 4 because the
partition 7 has 4 restricted crossings, which can be represented as the pairs of crossing arcs ([1, 3], (2, 5])7
([2,5],[4,7]), ([4,7],[5,10]), and ([4,7],[6,9]) as illustrated below.

Moreover, the last element of the block B; is 7 covered by the blocks By and Bz. Thus dl(B;) = 2. Since
dl(B3) =0, dI(B3) = 1, and By is a singleton covered by Bz and Bs, one can get dl(By) = 2. Threfore,
we have td(m) = 5.

3 Combinatorial Moment Formula of the (q, s)-Poisson Distri-
bution

We are going to investigate the n-th moments of the (g, s)-Poisson distribution, Hg\q’s). Namely, we
evaluate the vacuum expectation of the n-th power of the (g, s)-Poisson type operator (random variable),

w((p(f’s))"> = ((nq + V(g0 + VAG] )+ k)" 02 ’ Q)( -
s

In order to evaluate the vacuum expectation, we shall use the cards arrangement technique similar as

in [13] for juggling patterns. For non-crossing cases, see [24][25]. We are now required to prepare four

different cards to represent the restricted crossings. The cards and weights are explained in the subsequent

sections.

3.1 Creation Cards

The creation card C; (¢ > 0) has ¢ inflow lines from the left and (i + 1) outflow lines to the right, where
one new line starts from the middle point on the ground level. For each j > 1, the inflow line of the j-th
level will flow out at the (j + 1)-st level without any crossing. We give the weight v/ to the card Cj.
The creation card of level ¢ X

A



represents the operation

(VXaf,,) 6% = Vag?tHh, i >o.

3.2 Annihilation Cards

The annihilation card Az(-j ) (1 <j<4,i>1) has ¢ inflow lines from the left and (i — 1) outflow lines to

the right. On the card Agj ), only the inflow line of the j-th level goes down to the middle point on the
ground level and ends. The lines inflowed at lower than the j-th level keep their levels. Hence (j — 1)
crossings will appear. The line inflowed at the ¢-th level (¢ > j, higher than the j-th level) will flow out
at the (¢ — 1)-st level (one-decreased level) without any crossing. We shall give the weight VA siTlgi—1
to the card Az(-j ), where the parameter ¢ encodes the number of crossings and the parameter s encodes
the number of through out lines on the card. The annihilation cards of level i,

\/Xsi—lqj—l

j=1,2,...4,

A(j)
represent the operation ¢

(\/Xa(qys)) €01 = N1 g®lmD) | /Y gimlg @D

AL AP
SV IR ERED L s lgi @)
A® A
=VAsiT1[i], €801, i>1.

3.3 Intermediate Cards

The intermediate card Ni(j ) (1 <j<i,i>1)hasi inflow lines and the same number of outflow lines.

On the card Ni(J ), only the line inflowed at the j-th level goes down to the middle point on the ground
and it will continue as the first lowest outflow line. The inflow line at the ¢-th level (¢ < j, lower than
the jth level) will flow out at the (¢ + 1)-st level (one-increased level), and the inflow lines of higher than
the jth level will keep their levels. Hence we have (j — 1) crossings. We shall give the weight ¢/~! to the
card Ni(] ), where the number of crossings is encoded by the parameter q. The intermediate cards of level

i, -
qJ

jth . i

i=1,2,...1,

represent the operation Ni(J)
(ng) €% = €% +q€¥ + €%+ ¢ ¥
~ S N~ ———
NY  N® N® N®
= [i], &%, i> 1.
Remark 3.1. Tt should be noted that the middle point on the ground of level ¢ for ¢ > 1 is not the last

element of the block of a partition m. Therefore, the intermediate cards of level i, Ni(j ) for 1=1,2...4,
do not contain the weight s°~! encoding the number of throughout lines from the left to right without
touching the middle point on the ground. Therefore, n, # azq )@(q,5) unless s = 1.



3.4 Scalar Cards

The scalar card K; (i > 0) has ¢ horizontally parallel lines and the short pole at the middle point on
the ground. We shall give the weight A s’ to the card K;, where the parameter s encodes the number of
through out lines on the card. The scalar card K; of level 4

As®

|

K;

represents the operation

()\ ks) §®i _ /\Si §®i7

which can be considered as a s-deformation of the identity operator I = k.

3.5 Combinatorial Moment Formula

In this section, we would like to show how the cards arrangement technique is applied to derive a moment
formula from the viewpoint of combinatorics. More detail description is provided in Asai-Yoshida [5] .

Each card arrangement gives the set partition of [n], where the blocks of the partition could be realized
by the concatenation of the lines on the cards. In this expression, one can see that the creation and the
annihilation cards correspond to the first (minimum) and the last (maximum) elements in the blocks of
the size > 2, respectively, and the intermediate cards correspond to the intermediate elements in blocks.
Furthermore, the weight of the arrangement is given by the product of the weights of the cards used in
the arrangement.

Now we will briefly explain relationships between the weight of the arrangement and the set partition
statistics, that is, roles of three parameters, A, s and q.

(1) First of all, one can see

(\/X) #{creation cards}+#{annihilation cards} _ )\#{creation cards} _ )\#{B | Be, \B|Z2}

because the Motzkin path condition is satsified. In addition, one has

)\#{scalar cards} _ )\#{B | Bem, \B|:l}

Hence we have
\#1B|Ben, |BI>2} \#{B|Ben, |Bl=1} _ \#{B|Ber} _ \|r|

(2) Secondly, the parameter s encodes the total depth of blocks by the last elements, that is,

Cem, C covers k, where
H 5#{ ¢ | kis the last element of BJ = H sdl(B) = std(ﬂ—).
Bem Ber
(3) Finally, the crossings appeared in the card arrangement are nothing but the restricted crossings.

Therefore, the parameter ¢ in the weight of the arrangement encodes the number of the restricted
crossings in the corresponding partition, ¢"(™).

Let us explain the admissible card arrangement technique by an example. Then one may feel a flavor
of our approach.

Example 3.2. Consider the partition 7 = {{1,3,4,7},{2,5,10},{6,9},{8}} € P(10) in Example 2.4:



This partition can be realized in the following admissible card arrangement:

vV VA q 1 q VA VASRE A2 Vs VA

- )
TN T

1 2 3 4 5 6 7 8 9 10
o G NP NP NP G A K AD AP

This arrangement is the realization of a contributor of length 10,

y = (VAag,g) (Vaags) (Mks) (VAag,s) (ﬁazq,s))@@@(ﬁazq,s)) (VAa, ).
N ——

10 9 8 7 6 5 4 3 2 1

As one can see from the above cards arrangement, the values of statistics are given by |r| = 4, rc(n) =
4, td(w) = 5 and the weight of card arrangement (the product of the weight of the cards) becomes
Wt (Aﬂ) = Mgt sd.

Therefore, one can derive the following combinatorial moment formula of the (g, s)-Poisson distribution

).

Theorem 3.3 ([5]). The n-th moment of the (g, s)-Poisson distribution Hg\q’s) is given by

go((p(;"s))") _ Z o(y) = Z Al gre(m) gd(m)
)

contributory TEP(n
of length n

Remark 3.4. In [5], the special case s = ¢ is also discussed to see interesting connections with results [16].
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