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ABSTRACT. Consider a definable complete d-minimal expansion (F, <,+,-,0,1,...,)
of an oredered field F'. Let M be a definably compact definable C"submanifold

of F™ and 2 < r < oco. We prove that the set of definable Morse functions is
open and dense in the set of definable C" functions on M with respect to the
definable C? topology.

1. INTRODUCTION

In Morse theory the topological deta of a space can be described by Morse
functions defined on the space. We refer the readers to a famous book by J. Milnor
[11] for Mose theory on compact C'*° manifolds.

Let M = (F,+,-,<,...) be a d-minimal expansion of an ordered field F. Every-
thing is considered in M, the term “definable” is used in the sense of “definable with
parameters in M”, each definable map is assumed to be continuous and 2 < r < co.

Definable C" Morse functions in an o-minimal expansion of the standard struc-
ture of a real closed field are considered in [12], [7].

In this paper we consider definable C™ Morse frunctions on a definably compact
definable submanifold in d-minimal expansions of an ordered field when 2 < r < oc.
These structures are generalizations of o-minimal expansions of real closed fields.
Definable compactness is a generalization of compactness. If F' = R, then for a
definable subset of R, it is definably compact if and only if it is compact.

Definable C" manifolds are studied in [12], [1] [7].

Theorem 1.1 (Theorem 2.14) is our main result.

Theorem 1.1. Consider a d-minimal expansion of an ordered field F = (F, <
,+,+0,1,...). Let M be a definably compact D? submanifold of F™. Then the
set of all definable Morse functions on M is open and dense in the set D*(M) of
D2 functions of M.

Theorem 1.1 is a generalization of [7].

2. PRELIMINARY AND PROOF OF THEOREM 1.1
Recall the definitions of d-minimality and definably completeness.

Definition 2.1. An expansion of a dense linear order without endpoints F = (F, <
,...) is definably complete if any definable subset X of F' has the supremum and
infimum in F U {£oo} ([9]). A definably complete expansion F is d-minimal if for
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every m and definable subset A of F™*1 there exists an N € N such that for every
x € F™ the set {y € F|(z,y) € A} has non-empty interior or a union of at most N
discrete sets ([3], [10]).

The definition of dimension is found in [5, Definition 3.1].

Definition 2.2 (Dimension). Consider an expansion of a densely linearly order
without endpoints F = (F, <,...). Let M be a nonempty definable subset of F™.
The dimension of M is the maximal nonnegative integer d such that w(M) has a
nonempty interior for some coordinate projection 7 : F™ — F9. We consider that
FY is a singleton with the trivial topology. We set dim(M) = —oo when M is an
empty set.

Definition 2.3 ([6]). Consider a definably complete expansion F = (F, <,+,-,0,1,...
of an ordered field. Let » be 1 <r < 0.

(1) A definable subset X of F™ is a d-dimensional D" submanifold of F™ if each
point z € X there exist an open box U, of z in F™ and a D" diffeomorphism ¢,
from U, to some open box V,, of F™ such that ¢,(x) = 0 and U,NY = ¢ (FINV,),
where F4 C F™ is the vectors whose last (n — d) components are zero.

(2) A function f : X — F is a D" function if for any x € X and the open box
in (1), fog;!isa D" fuinction.

Definition 2.4. For a set X, a family K of subsets of X is called a filtered collection
if, for any By, By € K, there exists Bs € K with B3 C B; N Bs.

Consider an expansion of a dense linear order without endpoints F = (F; <,...).
Let X and T be D" manifolds. The parameterized family {S;};er of definable
subsets of X is called definable if the union (J,.,{t} x S; is definable in 7" x X.

A parameterized family {S;}:er of definable subsets of X is a definable filtered
collection if it is simultaneously definable and a filtered collection.

A definable space X is definably compact if every definable filtered collection of
closed nonempty subsets of X has a nonempty intersection. This definition is found
in [8, Section 8.4].

Definition 2.5. Consider a d-minimal expansion of an ordered field whose universe
is F. Let 7 : F" — F? be a coordinate projection. A D" submanifold M of F"
of dimension d is called a D" multi-valued graph (with respect to m) if, for any
x € M, there exist an open box U in F™ containing the point x and a D" map
7 :7(U) = F™ such that M NU = 7(w(U)) and 7 o 7 is the identity map defined
on 7(U).

Lemma 2.6. Consider a d-minimal expansion of an ordered field whose universe is
F. Let M be a D" submanifold M of dimension d. Let 11, 4 be the set of coordinate
projections from F™ onto F?. Let U, be the set of points x at which there exist an
open box U in F™ containing the point x and a D" map 7 : 7(U) — F™ such that
MNU = 7(x(U)) and 7 o 7 is the identity map defined on w(U). Then U, is a
D" multi-valued graph with respect to © and {Ux}rem, , s a definable open cover
of M.

Proof. 1t is obvious that U, is a D" multi-valued graph with respect to 7. It is also
obvious that Uy is open in M. The family {Uy }rem, , is a definable open cover of
M by [4, Lemma 3.5, Corollary 3.8]. O
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Proposition 2.7 (Definable Sard). Consider a d-minimal expansion of an ordered
field F = (F,<,+,-,0,1,...). Let M be a D' submanifold of F™ of dimension d
and f = (fi,...,fn) : M — F™ be a D' map. The set of critical values of f is
definable and of dimension smaller than n.

Proof. The proposition is trivial when d < n by [3, Lemma 4.5]. We consider the
case in which d > n in the rest of proof.

We denote the set of critical values of f by ¥;. The D' manifold M is covered
by finitely many D' multi-valued graphs U, ..., Uy by Lemma 2.6. The equality
Xy = Ule Y|y, obviously holds, where f|y, is the restriction of f to U;. The
set Xy is definable if Xy, is definable for every 1 < i < k. We have dim¥; =
max{dim ¥y, |1 <i < k} by [3, Lemma 4.5]. Therefore, we may assume that
M is a D! multi-valued graph with respect to a coordinate projection 7. We may
further assume that 7 is the projection onto the first d coordinates by permuting
the coordinates if necessary.

By the definition of D! multi-valued graphs, for any a € M, there exists a
nonempty open box B such that M N B is the graph of D' map defined on m(B).
In particular, the restriction of 7 to M N B is a D' diffeomorphism onto m(B).
The global coordinate functions z1,...,z4 are local coordinates of M at a. Let
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I'y = {z € M | rank(Df(x)) < n}. The set T'y is definable. "The set Xy is also
definable because the equality ¥y = f(As) holds, where Ay denotes the set of
critical points of f.

Assume for contradiction that dimX; = n. The definable set ¥; contains a
nonempty open box U. We can take a definable map g : U — Y such that fog
is an identity map on U. We may assume that g is of class C! by [3, Lemma
3.14] by shrinking U if necessary. By differentiation, the matrixD f(g(z)) - Dg(z) is
the identity matrix of size n. It implies that D f(g(x)) has rank at least n, which
contradicts the definition of I'. O

Lemma 2.8. Consider a d-minimal expansion of an ordered field F = (F,<
,+,0,1,...). Let m be the coordinate projection of F™ onto the first d coordi-
nates. Let U be a D? multi-valued graph with respect to ™ and f : U — F be a D?
map. We can find aq,...,aq € F such that the definable function ® : U — F given
by ®(x1,...,xn) = f(T1,...,Tn) — 2?21 a;z; is a Morse function and |a4|, ..., |ad]
are sufficiently small.

Proof. Observe that the global coordinate functions x1,...,x4 in F™ is a local
coordinate function of U by the definition of multi-valued graphs as proven in
the proof of Proposition 2.7. Consider the map H : U — F? given by H(x) =
(;—;1(:1:), ce ;—;;(I)) Observe that po € U is a critical point of H if and only

if det(Hy)(po) = det(Hg)(po) = 0, where Hy and Hg are Hessians of f and @,
respectively. Let (a,...,aq) be the point in Fd \ X g, where X denotes the set

of critical values of H. We can choose such (ay,...,aq) so that |aq|,...,|aq| are
sufficiently small because ¥y has an empty interior by Proposition 2.7. It is easy
to check that ® is a Morse function. We omit the details. O
Lemma 2.9. Consider a d-minimal expansion of an ordered field F = (F,<

,+,0,1,...). Let M be a D" submanifold of F™ with 0 < r < oco. Given a
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definable closed subset X of M, there exists a D" function f : M — F whose zero
set is X.

Proof. Consider the closure cl(X) of X in F™. There exists a D" function G :
F™ — F with G71(0) = cl(X) by [10]. The restriction of G' to M satisfies the
requirement. O

Lemma 2.10. Consider a d-minimal expansion of an ordered field F = (F,<
,+,0,1,...). Let M be a definable D" submanifold of F™ with 0 < r < co. Let
X andY be closed definable subsets of M with X NY = (. Then, there exists a D"
function f: M — [0,1] with f~*(0) = X and f~1(1) =Y.

Proof. There exist D" functions g,h : M — F with ¢ 1(0) = X and h~1(0) = YV

by Lemma 2.9. The function f : M — [0,1] defined by f(x) = @C)T),l(m)z satisfies
the requirement.

Lemma 2.11. Consider a d-minimal expansion of an ordered field F = (F,<
,+,0,1,...). Let M be a D" submanifold with 0 < r < co. Let C and U be closed
and open definable subsets of M, respectively. Assume that C is contained in U.
Then, there exists an open definable subset V. of M with C CV Ccl(V) CU.

Proof. There is a definable continuous function h : M — [0,1] with A= 1(0) = C
and (1) = M \ U by Lemma 2.10. The set V = {z € M; h(z) < 3} satisfies
the requirement. O

Lemma 2.12 (Fine definable open covering). Consider a d-minimal erpansion
of an ordered field F = (F,<,+,-,0,1,...). Let M be a D" submanifold with
0 <7 < oo. Let {U}_, be a finite definable open covering of M. For each
1 < ¢ < g, there exists a definable open subset V; of M satisfying the following
conditions:

(a) the closure cl(V;) in M is contained in U; for each 1 < i < ¢, and

(b) the collection {V;}I_, is again a finite definable open covering of M.

Proof. We inductively construct V; so that cl(V;) C U; and {V;}F ' U{U,}L, is a
finite deﬁnable open covering of M. We fix a positive integer k£ with k£ < ¢g. Set
Cr, = M\ (U V UUi—i41 Ui). The set Cy is a definable closed subset of M
contained in Uk There exists a definable open subset Vi of M with C, C V, C
cl(Vk) € Up by Lemma 2.11. It is obvious that {Vi}i_, U{U;}{_,,, is a finite
definable open covering of M. O

Definition 2.13. Let F = (F,<,+,-,0,1,...) be a d-minimal expansion of an
ordered field. Let M be a D" submanifold of F" and D" (M) be the set of D"
functions. The space D" (M) equips the topology defined in [2].

Theorem 2.14. Consider a d-minimal expansion of an ordered field F = (F,<
,+,+0,1,...). Let M be a definably compact D? submanifold of F™. The set of all
definable Morse functions on M is open and dense in D?(M).

Proof. We first prepare several notations and define several sets and maps for later
use. Set d = dim M. The D? submanifold M is covered by finitely many D? multi-
valued graphs Uy, ..., U by Lemma 2.6. Let U; be a D? multi-valued graph with
respect to a coordinate projection 7; : F™* — F9 for 1 < i < k. Let {V;}f:l be
a fine definable open covering of {U;}¥_; given in Lemma 2.12. Set C; = cl(V;).
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Observe that C; C U; and M = Ule C;. The definable set C; is a closed subset
of M. It deduces that C; is definably compact. By Lemma 2.10, we can take a
definable function \; : M — [0,1] such that A; *(0) = M \ U; and A; (1) = C;.

Let D; be the D! vector field such that D;(z) is the projection image of 9/0x;
onto the tangent space T, M of M at x € M. We can find a subset I; of {1,...,n}
of cardinality d such that m; is the projection onto the d coordinates (z; | j € I;).
The j-th smallest element in I; is denoted by o;(j). By the definition of multi-
valued graphs, T, M is spanned by (D;(z) | j € I;) for every x € U; and for every
1<i<k.

Let U be the set of all definable Morse functions on M. We first show that U
is open. We prove a stronger claim for later use. For every nonempty subset I of
{1,...,k}, we set

Ur := {f € D*(M) | f has no degenerate critical points on C; for each i € I}.

We prove that Uy is open. Take an arbitrary definable Morse function h: M — F.
We set hj» = D, jyhfor1 < j < dandie I. Weset H; = det(D,,(j,) Dy, (jo)P)1<j1,jo<d-
They are definable continuous functions defined on M. Since h has no degenerate
critical points on C; for i € I and the coordinates x4, (1), - - -, Z5,(q) give a local coor-
dinate of M at x € Uj;, the function G; := Z?:l |h%|+|H;] is positive on U for i € I.

In particular, we can find a positive K; € F such that G; > K; on the definably com-
pact definable set C; for i € I. We can take L; > 0 so that |Dy, ;) Do, js)h| < Li

on C;. Take a sufficiently small € > 0 so that d!((L; +¢)? — LY) 4+ de < K; for every

i € I. Consider the open set

Vhe={9€D*(M)||g—h| <e|Dj(g—h)|<e(1<j<d),
|D;j,Dj,(g—h)| <e (1 <j1,j2 <d)}

in D?(M). We can verify that 37_, | Do, (9] + | det(Dg.(j1) Do, (12)9)1 <41 jadl > 0
on C; for every i € I and g € V} .. It deduces that V}, . C Ur and Uy is open.

We next show that U is dense in D*(M). We first take arbitrary h € D*(M).
We define an open set Vy, . for positive € € F' in the same manner as above. Since
M is definably compact, every positive definable continuous function is bounded
from below by a positive constant. This deduces that {V;, - }.>0 is a basis of open
neighborhoods of h in D?(M).

Fix an arbitrary positive e € F' and set ¢/ = ¢/k. We have only to construct a
function g € U NV . so as to show that U is dense in D?(M). Set U; := Uy, ;)
for 1 <4 < k for simplicity. We construct g; € U; N Vy 5. It is obvious that
g:=gr €UNV) ..

We construct g; by induction on 7. We may assume that 7; is the projection onto
the first d coordinates by permuting the coordinates if necessary. We first consider
the case in which i = 1. We can find a1, ...,aq such that |a;| < ¢’ for 1 <j <d
and g1(x) = h(z) + Z?:1 a;z; is a Morse function by Lemma 2.8. It is obvious that
g1 €U N Vh,s’-

We next consider the case in which ¢ > 1. We can find ¢g;_1 € U;_1 NV, (i—1)er DY
induction hypothesis. We construct g; € U; NV, , . Such a g; obviously belongs
to U; N Vp ier. We have already shown that ¢/;_; is open. Therefore, we can find
§ > 0 such that Vg, | 5 CU;i—1 NV, . because {V,, | .»}ers0 is a basis of open
neighborhoods of g;—1 in D?(M).
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Set g; := gi_1—|—)\i-(2§l:1 a;z;) foray,...,aq € F. We want to choose ay,...,aq €
F satisfying the following conditions:
(1) g :=gi-1+ E?:l a;x; has no degenerate critical points in Uj.
(2) 9i € Vgi,l,é-
We check that g; belong to U; NV, | - when ay, ..., aq satisfy the above conditions
(1) and (2). It is obvious that g; € Vi, _, o~ by the inclusion V,, , s CV,, , . The
inclusion Vg, , s € U;—1 implies that g; has no degenerate critical points on C; for
1 < j <i—1. Since A; is identically one on C;, we have g; = g, on C;. Condition
(1) implies that g; has no degenerate critical points in C;. We have shown that g;
has no degenerate critical points on C; for 1 < 5 <4, and this means g; € U;.
The remaining task is to find ay,...,aq € F so that conditions (1) and (2) are
satisfied. The following inequalities are satisfied:

d k
19: = g < il M| < K- ay]
=1 j=1

d k
1Dj(gi — gi-1)| <> _lallDj(Nia)| < K- |ay|
=1 j=1
d k
1D, Dy, (9i — gi-1)| < Y laul| Dy, Dy, (i) < K-> ay|
1=1 j=1
Finitely many definable continuous functions |A\;z;|, |D;(Aiz;)| and |Dj, Dj, (Aiz;)|
defined on M appear in the above calculation. Since M is definably compact, we
can find 0 < K € F such that these functions are bounded above by K in M. We

used this fact in the calculation. We can find (aq,...,aq) so that K - 25:1 la;| < o

and ¢, has no degenerate critical points in U; by Lemma 2.8. This (aq,...,aq)

satisfies conditions (1) and (2). O
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