DEFINABLE MORSE FUNCTIONS ON DEFINABLY COMPACT MANIFOLDS IN D-MINIMAL STRUCTURES

MASATO FUJITA AND TOMOHIRO KAWAKAMI

ABSTRACT. Consider a definable complete d-minimal expansion $(F, <, +, \cdot, 0, 1, \ldots)$ of an oredered field F. Let M be a definably compact definable C^r submanifold of F^n and $2 \le r < \infty$. We prove that the set of definable Morse functions is open and dense in the set of definable C^r functions on M with respect to the definable C^2 topology.

1. Introduction

In Morse theory the topological deta of a space can be described by Morse functions defined on the space. We refer the readers to a famous book by J. Milnor [11] for Mose theory on compact C^{∞} manifolds.

Let $\mathcal{M} = (F, +, \cdot, <, \dots)$ be a d-minimal expansion of an ordered field F. Everything is considered in \mathcal{M} , the term "definable" is used in the sense of "definable with parameters in \mathcal{M} ", each definable map is assumed to be continuous and $2 \le r < \infty$.

Definable C^r Morse functions in an o-minimal expansion of the standard structure of a real closed field are considered in [12], [7].

In this paper we consider definable C^r Morse frunctions on a definably compact definable submanifold in d-minimal expansions of an ordered field when $2 \le r < \infty$. These structures are generalizations of o-minimal expansions of real closed fields. Definable compactness is a generalization of compactness. If $F = \mathbb{R}$, then for a definable subset of \mathbb{R}^n , it is definably compact if and only if it is compact.

Definable C^r manifolds are studied in [12], [1] [7].

Theorem 1.1 (Theorem 2.14) is our main result.

Theorem 1.1. Consider a d-minimal expansion of an ordered field $\mathcal{F} = (F, <, +, \cdot, 0, 1, \ldots)$. Let M be a definably compact \mathcal{D}^2 submanifold of F^n . Then the set of all definable Morse functions on M is open and dense in the set $\mathcal{D}^2(M)$ of \mathcal{D}^2 -functions of M.

Theorem 1.1 is a generalization of [7].

2. Preliminary and Proof of Theorem 1.1

Recall the definitions of d-minimality and definably completeness.

Definition 2.1. An expansion of a dense linear order without endpoints $\mathcal{F} = (F, <, \ldots)$ is definably complete if any definable subset X of F has the supremum and infimum in $F \cup \{\pm \infty\}$ ([9]). A definably complete expansion \mathcal{F} is d-minimal if for

 $^{2020\} Mathematics\ Subject\ Classification.$ Primary 03C64; Secondary 14P10, 14P20, 57R35, 58A05.

Key words and phrases. Definably complete, d-minimal structures, Morse theory, definable C^r functions, critical points, critical values, definably compact.

every m and definable subset A of F^{m+1} , there exists an $N \in \mathbb{N}$ such that for every $x \in F^m$ the set $\{y \in F | (x, y) \in A\}$ has non-empty interior or a union of at most N discrete sets ([3], [10]).

The definition of dimension is found in [5, Definition 3.1].

Definition 2.2 (Dimension). Consider an expansion of a densely linearly order without endpoints $\mathcal{F} = (F, <, ...)$. Let M be a nonempty definable subset of F^n . The dimension of M is the maximal nonnegative integer d such that $\pi(M)$ has a nonempty interior for some coordinate projection $\pi: F^n \to F^d$. We consider that F^0 is a singleton with the trivial topology. We set $\dim(M) = -\infty$ when M is an empty set.

Definition 2.3 ([6]). Consider a definably complete expansion $\mathcal{F} = (F, <, +, \cdot, 0, 1, \ldots)$ of an ordered field. Let r be $1 \le r < \infty$.

- (1) A definable subset X of F^n is a d-dimensional \mathcal{D}^r submanifold of F^n if each point $x \in X$ there exist an open box U_x of x in F^n and a \mathcal{D}^r diffeomorphism ϕ_x from U_x to some open box V_x of F^n such that $\phi_x(x) = 0$ and $U_x \cap Y = \phi_x^{-1}(F^d \cap V_x)$, where $F^d \subset F^n$ is the vectors whose last (n-d) components are zero.
- (2) A function $f: X \to F$ is a \mathcal{D}^r function if for any $x \in X$ and the open box in (1), $f \circ \phi_x^{-1}$ is a \mathcal{D}^r function.

Definition 2.4. For a set X, a family \mathcal{K} of subsets of X is called a *filtered collection* if, for any $B_1, B_2 \in \mathcal{K}$, there exists $B_3 \in \mathcal{K}$ with $B_3 \subseteq B_1 \cap B_2$.

Consider an expansion of a dense linear order without endpoints $\mathcal{F} = (F; <, ...)$. Let X and T be \mathcal{D}^r manifolds. The parameterized family $\{S_t\}_{t\in T}$ of definable subsets of X is called *definable* if the union $\bigcup_{t\in T} \{t\} \times S_t$ is definable in $T \times X$.

A parameterized family $\{S_t\}_{t\in T}$ of definable subsets of X is a definable filtered collection if it is simultaneously definable and a filtered collection.

A definable space X is definably compact if every definable filtered collection of closed nonempty subsets of X has a nonempty intersection. This definition is found in [8, Section 8.4].

Definition 2.5. Consider a d-minimal expansion of an ordered field whose universe is F. Let $\pi: F^n \to F^d$ be a coordinate projection. A \mathcal{D}^r submanifold M of F^n of dimension d is called a \mathcal{D}^r multi-valued graph (with respect to π) if, for any $x \in M$, there exist an open box U in F^n containing the point x and a \mathcal{D}^r map $\tau: \pi(U) \to F^n$ such that $M \cap U = \tau(\pi(U))$ and $\pi \circ \tau$ is the identity map defined on $\pi(U)$.

Lemma 2.6. Consider a d-minimal expansion of an ordered field whose universe is F. Let M be a \mathcal{D}^r submanifold M of dimension d. Let $\Pi_{n,d}$ be the set of coordinate projections from F^n onto F^d . Let U_{π} be the set of points x at which there exist an open box U in F^n containing the point x and a \mathcal{D}^r map $\tau : \pi(U) \to F^n$ such that $M \cap U = \tau(\pi(U))$ and $\pi \circ \tau$ is the identity map defined on $\pi(U)$. Then U_{π} is a \mathcal{D}^r multi-valued graph with respect to π and $\{U_{\pi}\}_{\pi \in \Pi_{n,d}}$ is a definable open cover of M.

Proof. It is obvious that U_{π} is a \mathcal{D}^r multi-valued graph with respect to π . It is also obvious that U_{π} is open in M. The family $\{U_{\pi}\}_{\pi \in \Pi_{n,d}}$ is a definable open cover of M by [4, Lemma 3.5, Corollary 3.8].

Proposition 2.7 (Definable Sard). Consider a d-minimal expansion of an ordered field $\mathcal{F} = (F, <, +, \cdot, 0, 1, \ldots)$. Let M be a \mathcal{D}^1 submanifold of F^m of dimension d and $f = (f_1, \ldots, f_n) : M \to F^n$ be a \mathcal{D}^1 map. The set of critical values of f is definable and of dimension smaller than n.

Proof. The proposition is trivial when d < n by [3, Lemma 4.5]. We consider the case in which $d \ge n$ in the rest of proof.

We denote the set of critical values of f by Σ_f . The \mathcal{D}^1 manifold M is covered by finitely many \mathcal{D}^1 multi-valued graphs U_1,\ldots,U_k by Lemma 2.6. The equality $\Sigma_f = \bigcup_{i=1}^k \Sigma_{f|U_i}$ obviously holds, where $f|_{U_I}$ is the restriction of f to U_i . The set Σ_f is definable if $\Sigma_{f|U_i}$ is definable for every $1 \leq i \leq k$. We have dim $\Sigma_f = \max\{\dim \Sigma_{f|U_i} \mid 1 \leq i \leq k\}$ by [3, Lemma 4.5]. Therefore, we may assume that M is a \mathcal{D}^1 multi-valued graph with respect to a coordinate projection π . We may further assume that π is the projection onto the first d coordinates by permuting the coordinates if necessary.

By the definition of \mathcal{D}^1 multi-valued graphs, for any $a \in M$, there exists a nonempty open box B such that $M \cap B$ is the graph of \mathcal{D}^1 map defined on $\pi(B)$. In particular, the restriction of π to $M \cap B$ is a \mathcal{D}^1 diffeomorphism onto $\pi(B)$. The global coordinate functions x_1, \ldots, x_d are local coordinates of M at a. Let $Df: M \to F^{d \times n}$ be the map giving the Jacobian matrix $(\frac{\partial f_i}{\partial x_j})_{1 \leq i \leq n, 1 \leq j \leq d}$. Set $\Gamma_f = \{x \in M \mid \operatorname{rank}(Df(x)) < n\}$. The set Γ_f is definable. The set Σ_f is also definable because the equality $\Sigma_f = f(\Lambda_f)$ holds, where Λ_f denotes the set of critical points of f.

Assume for contradiction that $\dim \Sigma_f = n$. The definable set Σ_f contains a nonempty open box U. We can take a definable map $g: U \to \Sigma_f$ such that $f \circ g$ is an identity map on U. We may assume that g is of class \mathcal{C}^1 by [3, Lemma 3.14] by shrinking U if necessary. By differentiation, the matrix $Df(g(x)) \cdot Dg(x)$ is the identity matrix of size n. It implies that Df(g(x)) has rank at least n, which contradicts the definition of Γ_f .

Lemma 2.8. Consider a d-minimal expansion of an ordered field $\mathcal{F} = (F, < +, \cdot, 0, 1, \ldots)$. Let π be the coordinate projection of F^n onto the first d coordinates. Let U be a \mathcal{D}^2 multi-valued graph with respect to π and $f: U \to F$ be a \mathcal{D}^2 map. We can find $a_1, \ldots, a_d \in F$ such that the definable function $\Phi: U \to F$ given by $\Phi(x_1, \ldots, x_n) = f(x_1, \ldots, x_n) - \sum_{i=1}^d a_i x_i$ is a Morse function and $|a_1|, \ldots, |a_d|$ are sufficiently small.

Proof. Observe that the global coordinate functions x_1, \ldots, x_d in F^n is a local coordinate function of U by the definition of multi-valued graphs as proven in the proof of Proposition 2.7. Consider the map $H:U\to F^d$ given by $H(x)=\left(\frac{\partial f}{\partial x_1}(x),\ldots,\frac{\partial f}{\partial x_d}(x)\right)$. Observe that $p_0\in U$ is a critical point of H if and only if $\det(H_f)(p_0)=\det(H_\Phi)(p_0)=0$, where H_f and H_Φ are Hessians of f and Φ , respectively. Let (a_1,\ldots,a_d) be the point in $F^d\setminus \Sigma_H$, where Σ_H denotes the set of critical values of H. We can choose such (a_1,\ldots,a_d) so that $|a_1|,\ldots,|a_d|$ are sufficiently small because Σ_H has an empty interior by Proposition 2.7. It is easy to check that Φ is a Morse function. We omit the details.

Lemma 2.9. Consider a d-minimal expansion of an ordered field $\mathcal{F} = (F, < ,+,\cdot,0,1,\ldots)$. Let M be a \mathcal{D}^r submanifold of F^m with $0 \leq r < \infty$. Given a

definable closed subset X of M, there exists a D^r function $f: M \to F$ whose zero set is X.

Proof. Consider the closure $\operatorname{cl}(X)$ of X in F^m . There exists a \mathcal{D}^r function $G: F^m \to F$ with $G^{-1}(0) = \operatorname{cl}(X)$ by [10]. The restriction of G to M satisfies the requirement.

Lemma 2.10. Consider a d-minimal expansion of an ordered field $\mathcal{F} = (F, < +, \cdot, 0, 1, \ldots)$. Let M be a definable \mathcal{D}^r submanifold of F^m with $0 \le r < \infty$. Let X and Y be closed definable subsets of M with $X \cap Y = \emptyset$. Then, there exists a \mathcal{D}^r function $f: M \to [0, 1]$ with $f^{-1}(0) = X$ and $f^{-1}(1) = Y$.

Proof. There exist \mathcal{D}^r functions $g,h:M\to F$ with $g^{-1}(0)=X$ and $h^{-1}(0)=Y$ by Lemma 2.9. The function $f:M\to [0,1]$ defined by $f(x)=\frac{g(x)^2}{g(x)^2+h(x)^2}$ satisfies the requirement. \square

Lemma 2.11. Consider a d-minimal expansion of an ordered field $\mathcal{F} = (F, < , +, \cdot, 0, 1, \ldots)$. Let M be a \mathcal{D}^r submanifold with $0 \le r < \infty$. Let C and C be closed and open definable subsets of C, respectively. Assume that C is contained in C. Then, there exists an open definable subset C of C with $C \subseteq C$ clC clC.

Proof. There is a definable continuous function $h: M \to [0,1]$ with $h^{-1}(0) = C$ and $h^{-1}(1) = M \setminus U$ by Lemma 2.10. The set $V = \{x \in M : h(x) < \frac{1}{2}\}$ satisfies the requirement.

Lemma 2.12 (Fine definable open covering). Consider a d-minimal expansion of an ordered field $\mathcal{F} = (F, <, +, \cdot, 0, 1, \ldots)$. Let M be a \mathcal{D}^r submanifold with $0 \leq r < \infty$. Let $\{U_i\}_{i=1}^q$ be a finite definable open covering of M. For each $1 \leq i \leq q$, there exists a definable open subset V_i of M satisfying the following conditions:

- (a) the closure $\operatorname{cl}(V_i)$ in M is contained in U_i for each $1 \leq i \leq q$, and
- (b) the collection $\{V_i\}_{i=1}^q$ is again a finite definable open covering of M.

Proof. We inductively construct V_i so that $\operatorname{cl}(V_i) \subset U_i$ and $\{V_i\}_{i=1}^{k-1} \cup \{U_i\}_{i=k}^q$ is a finite definable open covering of M. We fix a positive integer k with $k \leq q$. Set $C_k = M \setminus (\bigcup_{i=1}^{k-1} V_i \cup \bigcup_{i=k+1}^q U_i)$. The set C_k is a definable closed subset of M contained in U_k . There exists a definable open subset V_k of M with $C_k \subseteq V_k \subseteq \operatorname{cl}(V_k) \subseteq U_k$ by Lemma 2.11. It is obvious that $\{V_i\}_{i=1}^k \cup \{U_i\}_{i=k+1}^q$ is a finite definable open covering of M.

Definition 2.13. Let $\mathcal{F} = (F, <, +, \cdot, 0, 1, \ldots)$ be a d-minimal expansion of an ordered field. Let M be a \mathcal{D}^r submanifold of F^n and $\mathcal{D}^r(M)$ be the set of \mathcal{D}^r functions. The space $\mathcal{D}^r(M)$ equips the topology defined in [2].

Theorem 2.14. Consider a d-minimal expansion of an ordered field $\mathcal{F} = (F, < ,+,\cdot,0,1,\ldots)$. Let M be a definably compact \mathcal{D}^2 submanifold of F^n . The set of all definable Morse functions on M is open and dense in $\mathcal{D}^2(M)$.

Proof. We first prepare several notations and define several sets and maps for later use. Set $d = \dim M$. The \mathcal{D}^2 submanifold M is covered by finitely many \mathcal{D}^2 multivalued graphs U_1, \ldots, U_k by Lemma 2.6. Let U_i be a \mathcal{D}^2 multi-valued graph with respect to a coordinate projection $\pi_i : F^n \to F^d$ for $1 \le i \le k$. Let $\{V_i\}_{i=1}^k$ be a fine definable open covering of $\{U_i\}_{i=1}^k$ given in Lemma 2.12. Set $C_i = \operatorname{cl}(V_i)$.

Observe that $C_i \subseteq U_i$ and $M = \bigcup_{i=1}^k C_i$. The definable set C_i is a closed subset of M. It deduces that C_i is definably compact. By Lemma 2.10, we can take a definable function $\lambda_i : M \to [0,1]$ such that $\lambda_i^{-1}(0) = M \setminus U_i$ and $\lambda_i^{-1}(1) = C_i$.

Let D_i be the \mathcal{D}^1 vector field such that $D_i(x)$ is the projection image of $\partial/\partial x_i$ onto the tangent space T_xM of M at $x \in M$. We can find a subset I_i of $\{1,\ldots,n\}$ of cardinality d such that π_i is the projection onto the d coordinates $(x_j \mid j \in I_i)$. The j-th smallest element in I_i is denoted by $\sigma_i(j)$. By the definition of multivalued graphs, T_xM is spanned by $(D_j(x) \mid j \in I_i)$ for every $x \in U_i$ and for every $1 \leq i \leq k$.

Let \mathcal{U} be the set of all definable Morse functions on M. We first show that \mathcal{U} is open. We prove a stronger claim for later use. For every nonempty subset I of $\{1,\ldots,k\}$, we set

$$\mathcal{U}_I := \{ f \in \mathcal{D}^2(M) \mid f \text{ has no degenerate critical points on } C_i \text{ for each } i \in I \}.$$

We prove that \mathcal{U}_I is open. Take an arbitrary definable Morse function $h: M \to F$. We set $h_j^i = D_{\sigma_i(j)}h$ for $1 \le j \le d$ and $i \in I$. We set $H_i = \det(D_{\sigma_i(j_1)}D_{\sigma_i(j_2)}h)_{1 \le j_1,j_2 \le d}$. They are definable continuous functions defined on M. Since h has no degenerate critical points on C_i for $i \in I$ and the coordinates $x_{\sigma_i(1)}, \ldots, x_{\sigma_i(d)}$ give a local coordinate of M at $x \in U_i$, the function $G_i := \sum_{j=1}^d |h_j^i| + |H_i|$ is positive on U_i for $i \in I$. In particular, we can find a positive $K_i \in F$ such that $G_i > K_i$ on the definably compact definable set C_i for $i \in I$. We can take $L_i > 0$ so that $|D_{\sigma_i(j_1)}D_{\sigma_i(j_2)}h| < L_i$ on C_i . Take a sufficiently small $\varepsilon > 0$ so that $d!((L_i + \varepsilon)^d - L_i^d) + d\varepsilon < K_i$ for every $i \in I$. Consider the open set

$$\mathcal{V}_{h,\varepsilon} = \{ g \in \mathcal{D}^2(M) \mid |g - h| < \varepsilon, |D_j(g - h)| < \varepsilon \ (1 \le j \le d),$$
$$|D_{j_1}D_{j_2}(g - h)| < \varepsilon \ (1 \le j_1, j_2 \le d) \}$$

in $\mathcal{D}^2(M)$. We can verify that $\sum_{j=1}^d |D_{\sigma_i(j)}g| + |\det(D_{\sigma_i(j_1)}D_{\sigma_i(j_2)}g)_{1 \leq j_1, j_2 \leq d}| > 0$ on C_i for every $i \in I$ and $g \in \mathcal{V}_{h,\varepsilon}$. It deduces that $\mathcal{V}_{h,\varepsilon} \subseteq \mathcal{U}_I$ and \mathcal{U}_I is open.

We next show that \mathcal{U} is dense in $\mathcal{D}^2(M)$. We first take arbitrary $h \in \mathcal{D}^2(M)$. We define an open set $\mathcal{V}_{h,\varepsilon}$ for positive $\varepsilon \in F$ in the same manner as above. Since M is definably compact, every positive definable continuous function is bounded from below by a positive constant. This deduces that $\{\mathcal{V}_{h,\varepsilon}\}_{\varepsilon>0}$ is a basis of open neighborhoods of h in $\mathcal{D}^2(M)$.

Fix an arbitrary positive $\varepsilon \in F$ and set $\varepsilon' = \varepsilon/k$. We have only to construct a function $g \in \mathcal{U} \cap \mathcal{V}_{h,\varepsilon}$ so as to show that \mathcal{U} is dense in $\mathcal{D}^2(M)$. Set $\mathcal{U}_i := \mathcal{U}_{\{1,...,i\}}$ for $1 \leq i \leq k$ for simplicity. We construct $g_i \in \mathcal{U}_i \cap \mathcal{V}_{h,i\varepsilon'}$. It is obvious that $g := g_k \in \mathcal{U} \cap \mathcal{V}_{h,\varepsilon}$.

We construct g_i by induction on i. We may assume that π_i is the projection onto the first d coordinates by permuting the coordinates if necessary. We first consider the case in which i=1. We can find a_1,\ldots,a_d such that $|a_j|<\varepsilon'$ for $1\leq j\leq d$ and $g_1(x)=h(x)+\sum_{i=1}^d a_ix_i$ is a Morse function by Lemma 2.8. It is obvious that $g_1\in\mathcal{U}_1\cap\mathcal{V}_{h,\varepsilon'}$.

We next consider the case in which i > 1. We can find $g_{i-1} \in \mathcal{U}_{i-1} \cap \mathcal{V}_{h,(i-1)\varepsilon'}$ by induction hypothesis. We construct $g_i \in \mathcal{U}_i \cap \mathcal{V}_{g_{i-1},\varepsilon'}$. Such a g_i obviously belongs to $\mathcal{U}_i \cap \mathcal{V}_{h,i\varepsilon'}$. We have already shown that \mathcal{U}_{i-1} is open. Therefore, we can find $\delta > 0$ such that $\mathcal{V}_{g_{i-1},\delta} \subseteq \mathcal{U}_{i-1} \cap \mathcal{V}_{g_{i-1},\varepsilon'}$ because $\{\mathcal{V}_{g_{i-1},\varepsilon''}\}_{\varepsilon''>0}$ is a basis of open neighborhoods of g_{i-1} in $\mathcal{D}^2(M)$.

Set $g_i := g_{i-1} + \lambda_i \cdot (\sum_{i=1}^d a_i x_i)$ for $a_1, \ldots, a_d \in F$. We want to choose $a_1, \ldots, a_d \in F$ satisfying the following conditions:

- (1) $g'_i := g_{i-1} + \sum_{i=1}^d a_i x_i$ has no degenerate critical points in U_i .
- (2) $g_i \in \mathcal{V}_{q_{i-1},\delta}$

We check that g_i belong to $U_i \cap \mathcal{V}_{g_{i-1}, \varepsilon'}$ when a_1, \ldots, a_d satisfy the above conditions (1) and (2). It is obvious that $g_i \in V_{g_{i-1}, \varepsilon'}$ by the inclusion $\mathcal{V}_{g_{i-1}, \delta} \subseteq \mathcal{V}_{g_{i-1}, \varepsilon'}$. The inclusion $\mathcal{V}_{g_{i-1}, \delta} \subseteq \mathcal{U}_{i-1}$ implies that g_i has no degenerate critical points on C_j for $1 \leq j \leq i-1$. Since λ_i is identically one on C_i , we have $g_i = g_i'$ on C_i . Condition (1) implies that g_i has no degenerate critical points in C_i . We have shown that g_i has no degenerate critical points on C_j for $1 \leq j \leq i$, and this means $g_i \in \mathcal{U}_i$.

The remaining task is to find $a_1, \ldots, a_d \in F$ so that conditions (1) and (2) are satisfied. The following inequalities are satisfied:

$$|g_i - g_{i-1}| \le \sum_{l=1}^d |a_l| |\lambda_i x_l| < K \cdot \sum_{j=1}^k |a_j|$$

$$|D_j(g_i - g_{i-1})| \le \sum_{l=1}^d |a_l| |D_j(\lambda_i x_l)| < K \cdot \sum_{j=1}^k |a_j|$$

$$|D_{j_1} D_{j_2}(g_i - g_{i-1})| \le \sum_{l=1}^d |a_l| |D_{j_1} D_{j_2}(\lambda_i x_l)| < K \cdot \sum_{j=1}^k |a_j|$$

Finitely many definable continuous functions $|\lambda_i x_l|$, $|D_j(\lambda_i x_l)|$ and $|D_{j_1}D_{j_2}(\lambda_i x_l)|$ defined on M appear in the above calculation. Since M is definably compact, we can find $0 < K \in F$ such that these functions are bounded above by K in M. We used this fact in the calculation. We can find (a_1, \ldots, a_d) so that $K \cdot \sum_{j=1}^k |a_j| < \delta$ and g'_i has no degenerate critical points in U_i by Lemma 2.8. This (a_1, \ldots, a_d) satisfies conditions (1) and (2).

References

- [1] A. Berarducci and M. Otero, *Intersection theory for o-minimal manifolds*, Ann. Pure Appl. Logic **107** (2001), 87–119.
- [2] J. Escribano, Approximation theorem in o-minimal structures, Illinois J. Math., 46 (2002), 111-128.
- [3] A. Fornasiero, D-minimal structures version 20, preprint (2021) arXiv:2107.04293.
- [4] M. Fujita, Definable C^r structures on definable topological groups in d-minimal structures, preprint (2024), arXiv:2404.15647v1.
- [5] M. Fujita, Locally o-minimal structures with tame topological properties, J. Symbolic Logic, 88 (2023), 219–241.
- [6] M. Fujita and T. Kawakami, Approximation and zero set of definable functions in a definably complete locally o-minimal structure, arXiv:2301.04264 (2023).
- [7] T. Kawakami, Definable Morse functions in a real closed field, Bull. Fac. Ed. Wakayama Univ. Natur. Sci.. (2012) **62**, 35–38.
- [8] W. Johnson, Fun With Fields, PhD Thesis (University of California, Berkeley, 2016).
- [9] C. Miller, Expansions of dense linear orders with the intermediate value property, J. Symb. Log. 66, 1783—1790 (2001).
- [10] C. Miller and A. Thamrongthanyalak, D-minimal expansions of the real field have the zero set property, Proc. Amer. Math. Soc. 146 (2018), 5169--5179.
- [11] J. Milnor, Morse theory, Ann. of Math. Stud., No. 51 Princeton University Press, Princeton, NJ, 1963.
- [12] Y. Peterzil and S. Starchenko, Computing o-minimal topological invariants using differential topology, Trans. Amer. Math. Soc. 359, (2006), 1375-1401.

DEFINABLE MORSE FUNCTIONS ON DEFINABLY COMPACT MANIFOLDS IN D-MINIMAL STRUCTURES

Department of Liberal Arts, Japan Coast Guard Academy, 5-1 Wakaba-cho, Kure, Hiroshima 737-8512, Japan

 $Email\ address {\tt : fujita.masato.p34@kyoto-u.jp}$

DEPARTMENT OF MATHEMATICS, WAKAYAMA UNIVERSITY, WAKAYAMA, 640-8510, JAPAN

Email address: kawa0726@gmail.com