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The author recently proved the existence of definable quotient of a definable
equivalence relation and definable C™ group structure on a definable topolog-
ical group in d-minimal structures. They are generalization of the results on
definably complete locally o-minimal structures. In these studies, the author
developed measures which supplement dimension function. We expect that
these measures are useful for other studies on d-minimal structures. We intro-

duce these measures in this paper.

1 Introduction

The author has recently tried to generalize the geometric assertions for o-minimal
structures and definably complete locally o-minimal structures to d-minimal struc-
tures. For instance, the existence of definable quotient was first studied by Brumfel
[1] in the semialgebraic category and it was extended to o-minimality by van den
Dries in [3]. Scheiderer showed Brumfel’s result holds under a relaxed assumption
in semialgebraic category [18], and the author and Kawakami extended Scheiderer’s
result to definably complete o-minimal case in [10]. Finally, the author generalized
their result to the d-minimal case in [7].

In Pillay’s seminal paper [16], he proved that every definable group has a ‘natural’

T737-8512 JL B IR R A HERT 5-1



definable topology under which group operations are continuous. His result was gener-
alized to more general structures satisfying several technical conditions on dimension
function by Wencel [20]. It is not a hard task to show that dimension function sat-
isfies Wencel’s requirements in definably complete locally o-minimal structures using
the dimension formulas in [6, 11, 9]. The author proved an assertion similar but not
identical to Wencel’s result in d-minimal expansions of ordered ficlds [8]. He showed
that a definable topological group has a definable C" structure under which group
operations are of class C".

In both studies [7, 8], the author needed to develop new measures which supplement
dimension function, though we could complete the proofs using dimension function
alone in previous studies. This is dues to the absence of ‘continuity property’ (and
‘strong frontier formula’) of dimension function in d-minimal structures though conti-
nuity property is enjoyed both in o-minimal structures and definably complete locally
o-minimal structures. The author expects that these two measures are also useful in
other studies on d-minimal structures. The purpose of this proceeding is to introduce
these two new measures, that is, extended rank and partition degree.

In this note, we only consider expansions of dense linear orders without endpoints.
Under this setting, we may assume that the underlying space, say F', is a topological
space equipped with the order topology. Since any definable set is a subset of F™ for
some positive integer n, every definable set is equipped with the topology induced
from the product topology on F". Unless we explicitly give a topology on a definable
set, we assume that the definable set is equipped with the induced topology.

2 Dimension formulas
This section is a preliminary section. We first recall several basic definitions.

Definition 2.1 ([3, 19, 13, 5]). An expansion of a dense linear order without endpoints
F = (F,<,...)is o-minimal if every definable subset of F' is a finite union of points
and open intervals.

The expansion F is locally o-minimal if, for every definable subset X of F' and for
every point a € M, there exists an open interval I containing the point a such that

X N1 is the union of finitely many points and open intervals.



The expansion F is definably complete if any definable subset X of F' has the
supremum and infimum in M U {£oc}.

The structure F is d-minimal if it is definably complete, and every definable subset
X of F'is the union of an open set and finitely many discrete sets, where the number
of discrete sets is bounded by the number which does not depend on the parameters
of definition of X.

An o-minimal structure is always a definably complete locally o-minimal structure,
and a definably complete locally o-minimal structure is always d-minimal. A standard
textbook for o-minimal structure is [3]. The papers [12, 17] also treat o-minimality.
See [19, 4, 6, 11] for the basic properties of sets definable in locally o-minimal struc-
tures. The author recommends [5, 14] for d-minimal structures.

We next recall the definition of dimension.

Definition 2.2 (Dimension). Consider an expansion of a dense linear order without
endpoints F = (F,<,...). Let X be a nonempty definable subset of F". Recall
that FO is a singleton with the trivial topology. The dimension of X is the maximal
nonnegative integer d such that m(X) has a nonempty interior for some coordinate

projection 7 : F™ — F4. We set dim(X) = —co when X is an empty set.

In o-minimal structures, definably complete locally o-minimal structures and d-
minimal expansions of an ordered field, dimension function enjoys the following prop-

erties called van den Dries’s requirements named after van den Dries’s paper [2].

Definition 2.3. Consider a structure F = (F,...). Let D be the set of all definable
sets and Z>g :={n € Z | n > 0}. A map dim : D — Z>o U {—o0} satisfies van den

Dries’s requirements if the following conditions are satisfied:

(1) dim(S) = —o0 & S =0; dim({z}) =0 for all z € F and dim F' = 1.

(2) dim(S7 U S3) = max{dim Sy, dim Sy }.

(3) dim S? = dim S for any definable set S C F™ and any permutation o of
{1,...,n} 87 ={(z501), -, Ton)) € F" | (z1,...,2,) € S}.

(4) Let T be a definable subset of F"*! and T, = {y € F | (z,y) € T} for any
x € F'". T(i) .= {x € F" | dim(T,) = i} are definable and dim({(z,y) €
T |z € T6)}) = dimT(i) + i.



When the dimension function satisfies van den Dries’s requirement, the following
formulas hold [2].

(1) Let f: X — F™ be a definable map. We have

dim(f(X)) < dim X.

(2) (Addition formula) Let ¢ : X — Y be a definable surjective map whose

fibers are equi-dimensional. We have
dim X = dim Y + dim ¢~ *(y)
forally e Y.

We know that dimension function satisfies the following continuity property and

strong frontier formula in definably complete locally o-minimal structures.

(1) (Continuity property) Let f : X — M"™ be a definable map. Set D(f) :=
{z € X | f is discontinuous at x}. The following inequality holds:

dim(D(f)) < dim X

(2) (Strong frontier formula) Let 0X be the frontier of a definable set X. We
have
dim(0X) < dim X.

The continuity property (1) implies the inequality in (2). Consider the definable
function which is one on X and zero on 90X for instance. Neither properties (1) nor
(2) are enjoyed in d-minimal structures. The dimension function behaves slightly
wilder in d-minimal structures than definably complete locally o-minimal structures.
In the application studies of definably complete locally o-minimal structures [20, 10],
we use both van den Dries’s requirements and continuity property. Recall that D
is the set of all definable sets. We needed to develop some linearly ordered set £
and some measures m : D — £ U {—o0} which satisfies at least one of the following
conditions in order to conduct application studies in d-minimal structures under a

similar strategy.
(A) Let f: X — F™ be a definable map. The following inequality holds:
m(D(f)) <m(X). (1)
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(B) We have
m(0X) < m(X). (2)

We introduce extended rank in Section 3 and partition degree in Section 4. Extended
rank satisfies the inequality (2) and the pair of dimension and partition degree satisfies

the inequality (1).

3 Extended rank

We introduce the notion of extended rank in this section. The facts introduced in
this section are found in [7] with proofs. In order to give the definition of extended

rank, we first recall Cantor-Bendixson rank.

Definition 3.1. We denote the set of isolated points in a topological space S by
iso(5). We set Ipt(S) := S\ iso(S). In other word, a point x € S belongs to Ipt(.S) if
and only if x € clg(S\ {z}).

Let X be a nonempty closed subset of a topological space S. We set X[i] as follows

for every nonnegative integer i:

X[0] =X
X[m] = Ipt(X[m — 1])

We say that rank(X) = m if X[m] =0 and X[m — 1] # ). We say that rank X = co

when X[m] # () for every natural number m.

Lemma 3.2. Let F = (F,<,...) be an expansion of a dense linear order without
endpoints. For a definable closed subset A of F' with empty interior, rank(A) = k if

and only if k is the least number of discrete sets whose union is A.

Recall that every definable subset of F' with empty interior is a finite union of
discrete set in d-minimal structures. This lemma indicates that the Cantor-Bendixson
rank is a good supplement for definable subsets of F' of dimension zero.

We need to extend this notion to handle definable sets of positive dimension. The

following extended rank is defined so as to handle such definable sets.

Definition 3.3 (Extended rank). Consider a d-minimal expansion of an ordered field

F=(F,<,+,-,0,1,...). Let II(n,d) be the set of coordinate projections of F" onto
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F4. Recall that F is a singleton. We consider that II(n,0) is a singleton whose
element is a trivial map onto FY. Since II(n,d) is a finite set, we can define a linear
order on it. We denote it by <ri(,,4). Let &, be the set of triples (d,n,r) such that d
is a nonnegative integer not larger than n, m € II(n,d) and r is a positive integer. The
linear order <g¢, on &, is the lexicographic order. We abbreviate the subscript &, of
<g, in the rest of the paper, but it will not confuse readers. Let X be a nonempty
bounded definable subset of F™. The triple (d,7,r) is the extended rank of X and
denoted by eRank,, (X) if it is an element of &, satisfying the following conditions:

e d=dimX;

o the projection 7 is a largest element in II(n, d) such that 7(X) has a nonempty
interior;

e ris a largest positive integer such that there exists a definable open subset U
of F'¢ contained in m(X) such that the set 771(x) N X is of dimension zero and

the equality rank(7—1(x) N X) = r holds for each z € U.

Note that such a positive integer r exists by [5, Lemma 5.10]. We set eRank,, () = —occ
and define that —oo is smaller than any element in &,.

Let us consider the case in which X is an unbounded definable subset of F™. Let

¢ : F — (—=1,1) be the definable homeomorphism given by p(x) = \/1”_’;_7 We define
on  F™" — (=1,1)" by @n(z1,...,24) = (@(z1),...,0(x,)). We set eRank, (X) =
eRank,, (¢, (X)). We confirmed that the equation eRank,(X) = eRank,(¢,(X))
holds when X is bounded.

In [7], the author first collects the desired properties of a new measure which are
required to generalize the proof of [10] as follows: We then proved that the extended

rank defined above satisfies the requirements.

Definition 3.4. Let F = (F,<,...) be an expansion of a dense linear order without
endpoints. Let Def(F™) be the set of definable subsets of F™. The structure F has
a good extended rank function if, for each nonnegative integer n, there exists a map

eRank,, : Def(F"™) — &, U {—oo} satistying the following conditions:

(a) The target space &, is a linearly ordered set having a smallest element and —oo

is smaller than any element in &,.



(b) eRank,(X) = —occ & X = 0.

(c) There is no infinite decreasing sequence e; > eg > - -+ of elements in &,.

(d) eRank,, (AU B) = max{eRank,(A4), eRank, (B)}

(e) Let X,Y € Def(F™) with X C Y. If eRank, (X) = eRank,(Y), there exists
a definable subset U of X such that U is open in Y and eRank, (X \ U) <
eRank,,(Y). (X coincides with Y except ‘thin’ subset.)

(f) A nonempty subset X of F™ belonging to Def(F™) is discrete whenever

eRank,,(X) is the smallest element in &,.
We simply denote eRank,,(X) by eRank(X) when n is clear from the context.
The following lemma says that the extended rank satisfies inequality (2).

Lemma 3.5. Let S C X be definable subsets of F™.  Then, the inequality
eRank 0x S < eRank S holds.

Extended rank has several drawbacks. First of all, the definition of extended rank
is ugly. The second weak point is that two definable sets in a common ambient space
F™ are only comparable. Finally, in the case where X is a definably bijective to Y,
we may have eRank,, (X) # eRank, (Y) though we have dim X = dimY.

4 Partition degree

We want to introduce the notion of partition degree in this section. The facts given

here are found in [8] with proofs. We first give its definition.

Definition 4.1. Let r be a positive integer. Consider a definably complete expansion
of an ordered field. Let F' be its universe. The partition degree, denoted by p. deg(X),
of a nonempty definable subset X of F™ of dimension d is the minimum nonnegative
integer m such that X is partitioned into m + 2 definable subsets X _1, Xg,..., X

satisfying the following conditions:

(1) dim X_; < d:
(2) the definable set X; is a nonempty definable C" submanifold of dimension d

and it is open in U;:—1 X; for each 0 <i < m.



Note that we do not require that X 1 is nonempty. The sequence X 1, Xo, ..., X,, of

definable subsets of X satisfying the above conditions is called an r-partition sequence.

The natural question is whether p.deg(X) is well-defined. In other word, does
such a minimum integer m satisfying the conditions in the definition exist and does
m depend on r even when such m exists? The following two assertions provide

affirmative answers to this questions.
Proposition 4.2. The partition degree p.deg(X) is independent of the choice of r.

Theorem 4.3. Consider a d-minimal expansion of an ordered field. We have

p.deg(X) < oo for every nonempty definable set X.
The following theorem illustrates uniformness of partition degree.

Theorem 4.4. Consider a d-minimal expansion of an ordered field. Let w: F™T™ —
F'™ be the coordinate projection onto the first m coordinate. Let X be a definable
subset of F™ ™. There exists positive integer q such that p.deg(X N7~1(x)) < q for
every x € m(X).

We next introduce a standard procedure for taking a shortest r-partition sequence.
We begin with the introduction of a preliminary notion. We do not give a definition

of definable C" submanifolds of F" because they are defined straightforwardly.

Definition 4.5. Let X be a definable subset of F” of dimension d. We say that a
point x in F™ is r-reqular in X if x € X and there exists a definable C" diffeomorphism
¢ : U — V from a definable open neighborhood U of x in X which is simultaneously
a definable C" submanifold onto a definable open subset V' of F9,

We set Reg,.(X) as follows:

Reg, (X) = {r-regular points in X}.
We get the following proposition:

Proposition 4.6. A definable subset X of F™ of dimension d is a definable C"

submanifold of dimension d if and only if every point in X is r-reqular in X.

The following proposition provides a standard procedure to generate an r-partition

sequence of minimum length:



Proposition 4.7. Consider a d-minimal expansion of an ordered field. We define
X (i) as follows for each i > —1:

o X<—1> :X,'
e X(i) = X(i 1)\ Reg, (X(i — 1)).

There exists a nonnegative integer m such that dim X (m) < dim X and the equality
p.deg(X) = m holds. In addition, (X (m),Reg™(X),...,Reg?(X)) is an r-partition
sequence of X, where Reg.(X) := Reg, (X (i — 1)) for 0 <i < m.

A significant feature of partition degree is that it is preserved under definable home-

omorphism.

Theorem 4.8. Let X and Y be definable sets which are definably homeomorphic to
each other. Then the equality p. deg(X) = p.deg(Y) holds.

It is easy to show that partition degree is not preserved under definable bijection.

Proposition 4.9. Let X be a nonempty definable subset of F™. There exist a definable
subset Y of F™" ™! of p.deg(Y) = 0 and a definable bijection ¢ : X — Y.

Using the standard r-partition sequence of minimum length, we can prove the fol-

lowing:

Theorem 4.10. Let X and Y be definable sets. Then the equality p.deg(X xY) =
p. deg(X) + p.deg(Y") holds.

The following proposition asserts that the pair of dimension function and partition

degree satisfies a similar inequality to the inequality (1).

Proposition 4.11. Let X be a definable set and f1,...,fr : X — F be definable
functions. There exists a definable open subset U of X such that at least one of the

inequalities
dim X \ U < dim X and p.deg X \ U < p.deg X

holds, U is a definable C" submanifold and the function f; restricted to U is of class
C" for each 1 <1 <k.



We expect that every definable function defined on a definable set X is either
continuous or of class C" on a definable subset Y of X which is ‘almost the same’ as
X. For instance, the notion of d-largeness is introduced as such a notion in [20]. The
notion of d-largeness possesses the expected property in definably complete locally o-
minimal structures, but it does not necessarily have when the structure is d-minimal.

We introduce the notion of hugeness and r-largeness as alternatives of d-largeness.

Definition 4.12. Consider an expansion of a dense linear order without endpoints.
Let X and Y be definable sets with X C Y. We say that X is lean in Y if and only
if dim(inty X) < dimY. We call that X is huge in Y if Y \ X is lean in Y.

Let r be a positive integer. Consider a definably complete expansion of an ordered
field. Let X and Y be definable sets with X C Y. We say that X is r-large in Y if
inty (X NReg,.(Y)) # 0.

We have the following equivalence in d-minimal expansion of an ordered field.

Proposition 4.13. Consider a d-minimal expansion of an ordered field. Let X andY

be definable sets with X CY. Letr be a positive integer. The following are equivalent:

(1) The definable set X is lean in Y ;
(2) The definable set X is not r-large in Y;
(3) dim(X NReg,.(Y)) < dimY.

In addition, conditions (1) through (3) hold when dim X < dimY’.

The notion of d-largeness coincides with that of hugeness in definably complete
locally o-minimal structures. In the last of this paper, we introduce the following
proposition: This seems to be technical, but it is very useful. In fact, it is one of key

lemmas in [8].

Proposition 4.14. Consider a d-minimal expansion of an ordered field F = (F, <
,+,,0,1,...). Let w: F™ — F™ be a coordinate projection. Let X and Z be definable
subsets of F™ such that Z C X and dim X = dim Z. Assume that dim(X N7~ 1(z))
is independent of x € w(X). Set

W ={zecn(X)|n Yx)NZ is not lean in 7~ (x) N X}.
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If Z is lean in X, then W is lean in 7(X).

5 Concluding remarks

The important features of dimension function in definably complete locally o-
minimal structures are as follows: These features are used here and there in geometric
studies of definably complete locally o-minimal structures. However, the author cur-
rently fails to find a reasonable measure m satisfying all the following conditions in

d-minimal structures:

e m(AU B) = max{m(A4),m(B)};

e Let f: X — F be a definable map. Then we have m(D(f)) < m(X);

e m(0X) <m(X);

o The value of m is preserved under definable bijections (or more strongly,
m(f(X)) < m(X) for a definable map f defined on X).

a reasonable addition formula

Two measures, extended rank and partition degree, introduced in this note satisfy
a part of the above conditions, but do not satisfy all. The author thinks that the
geometric study of d-minimal structures will be more boosted if a measure satisfying

all the above conditions is found.
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