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ABSTRACT. We aim to relativize the (model-theoretic) notion of strong types to a solution set of a
partial type, and then characterize them using hyperimaginaries. We also present some unresolved
natural questions appeared during our research.

The purpose of this article is to give a brief overview of [LL24]. Any reader interested in the technical
details can consult [LL24]. In fact, there, we have worked in the more generalized context, over an
arbitrary hyperimaginary (not just over {}). This causes more technical difficulties, and sometimes, even
an additional assumption is necessary. All of these issues when we work over a hyperimaginary are
well explained in [LL24]. The references in this article may not be very accurate and even omit them
sometimes; we apologize for this. More accurate references may be found on [LL24].

1. PRELIMINARIES

Throughout, we will work in a sufficiently saturated and strongly homogeneous (monster) model €.

Definition 1.1. (1) Any a € € is called a (real) element of €.
(2) An equivalence class of an (-definable equivalence relation E is called an imaginary.
(3) An equivalence class of an @-type-definable equivalence relation F is called a hyperimaginary.

Note that any real tuple is an imaginary (a = a=), and any imaginary is a hyperimaginary.

Example 1.2. There are natural examples of hyperimaginaries. Let M = (S',C,{g1 : n > 1}), where
C is a ternary relation and each g1 is a unary function symbol:

(1) S!is a unit circle on the real plane,
(2) M = C(a,b,c) if and only if a,b and ¢ are in clockwise-order, and
(3) g1 (a) = rotation of a by 2X-radians clockwise.

Bla.y) = N\ Cla.y. 92 @)V Cly, 2. 91 (v).
1<n
We can make the following observations:
e E(x,y) is an (-type-definable equivalence relation.
e Let € E Th(M) be a monster model. For any a € €, ag is a hyperimaginary, which collects all
elements ‘infinitesimally close’ to or having 'distance 0’ from a.
o |{f(ag) : f € Aut(¢)}| is infinite, but bounded by 2%°. That is, ax € bdd(}) (we will define
bdd () soon).
Note that we can do similar work in an expansion of Tpy,o, but no boundedness there.

Now we extend the usual definable, algebraic closures in terms of real elements into the context of
hyperimaginaries.

Definition 1.3. (1) The definable closure over (§, dcl(@) is the set of hyperimaginaries e such that
[{f(e): feAu(€)} =1. If e € dcl(P), then we say e is definable over §.
(2) The algebraic closure over @, acl(f)) is the set of hyperimaginaries e such that |{f(e) : f €
Aut(€)}| < w If e € acl(D), then we say e is definable over ().
(3) The bounded closure over ), bdd((}) is the set of hyperimaginaries e such that |{f(e) : f €
Aut(€)}] is small (that is, less than the degree of saturation and strong homogeneity of the
monster model). If e € bdd(f), then we say e is definable over §.
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From the definition, it can be checked that dcl(f)) N € is the usual definable closure of §). Note that for
imaginaries, being bounded is the same as being algebraic; bdd(f)) N € is the usual algebraic closure of {).

Recall that given (small) A C €, Auty(€) is an automorphism group of €, which fixes A pointwise.
Regarding a hyperimaginary as a ‘single object’, it is natural to define the automorphism group fixing a
hyperimaginary in the following way.

Definition 1.4. Let e be a hyperimaginary. Aute(€) = {f € Aut(€) : f(e) = e (setwise)}.

We can also naturally define a collection of automorphisms fixing a set of hyperimaginaries. Note that
a sequence of hyperimaginaries is interdefinable with a single hyperimaginary, so Definition 1.4 indeed
extends the definition of Aut(C).

Note that dcl(@), acl(), and bdd(f)) are not necessarily small. But for each of them, we can find a
small set of hyperimaginaries interdefianble with the corresponding one, so we will pretend that they are
small sets. This fact can be found on [C11] or [K14].

The definable closure over () is just interdefinable with (), hence it will be not very interesting to study
definable closures. But for algebraic closures and bounded closures, it is well-knwon that there are nice
characterizations:

Theorem 1.5. (1) The following are equivalent.

(a) There is f € Aut,cip) (&) such that f(a) =b.

(b) a =5b, i.c. for any O-definable finite equivalence relation E, E(a,b). We say that a and b
have the same Shelah-strong type.

(2) The following are equivalent.

(a) There is f € Autpaq(p)(€) such that f(a) = b.

(b) a =XF b, ie. for any O-type-definable bounded equivalence relation E, E(a,b). We say that
a and b have the same KP-strong type (KP stands for Kim-Pillay).

Generalizing type-definability to invariance, we have the following definition.

Definition 1.6. a =" b if for any (-invariant bounded equivalence relation E, E(a,b). We say that a
and b have the same Lascar-strong type.

Similar as =5 and =XP | there is Autf,(¢) < Aut(€) such that a =L b if and only if there is f € Autfy,(¢)
such that f(a) = b. Explicitly, Autfy, () is a the subgroup of Aut)<), generated by

{f € Aut(€) : there is M |= T such that f fixes M pointwise}.

2. RELATIVIZATION TO THE SOLUTION SET OF A PARTIAL TYPE

Now we define the notion of main interest. Let 3 be any (partial) type over (), possibly with infinitely
many variables.

Definition 2.1. Autf(¥) =
{o € Aut(€) | X(€) : for any (small) cardinal A, for any tuple a = (a;);<x
where each a; = X(z;), a = o(a)}.

Autfg(Y) and Autfkp(X) can be defined similarly.

The next proposition says that in Definition 2.1, we only need to consider countable tuples.
Proposition 2.2. Autfy,(X) =

{o € Aut(€) [ (€) :for any countable tuple a = (a;)i<w
where each a; = Y(x;), a == o(a)}.

Note that this proposition is nontrivial even when ¥ = {x = x}.

Sketch of the proof. Suppose that for any corresponding countable subtuples of a and b, they have the
same Lascar strong type. a =" b if and only if the “Lascar distance”, d(a,b) between a and b, d(a,b),
is finite. Then by induction and the fact that d(a,b) < k is type-definable, by compactness, it can be
proved that for any subtuples ag and by of a and b, d(ag,by) < k for some uniform k¥ < w. Then again by
compactness, d(a,b) < k. O
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By definition, for any M |= T and f € Auty(€), a =" f(a) for any tuple a in €. Similarly, it is
natural to ask whether there is small b in X(€) such that if f € Auty(€), then for any tuple a in 3(€),
a = f(a). Relaxing even further, we can ask whether there is some small tuple b in %(€) such that if
b=l f(b), then for any tuple a in 3(€), a =L f(a).

Lemma 2.3. A small tuple b of realizations of > is called a Lascar tuple (in X) if
Autf,(X) = {o € Aut(€) | 3(€) : b= (b)}.
For any %, there is a Lascar tuple b in X.

Sketch of the proof.
{¢/ =" cis a (at most) countable tuple of realizations of ¥}
is a small set. Take exactly one representative for each ¢/ =", and make a sequence which enumerates
all of them. Then it is a Lascar tuple. O
Recall the following classical notion and a fact.

Definition 2.4. Galy(T) := Aut(€)/ Autfy,(€) is the Lascar group of T.

Proposition 2.5. v : Sy (M) — Gal,(T), tp(f(M)/M) — f/Autfy(€) is a (well-defined) surjective
map, and Galy,(T) is a quasi-compact topological group with the quotient topology induced by v.

In ¥(¢), we can do the same thing with a Lascar tuple b, instead of a model M. The proof of Corollary
2.7 is straightforward; note that there is a natural quotient map from Galg,(€) to Galy,(X).

Definition 2.6. Gal,(X) = Aut(€) | (€)/ Autf, (X), the Lascar group relativized to X.
Corollary 2.7. vy : Sp(b) — Galy,(X), tp(f(b)/b) — f-Autfy,(X) is well-defined and makes Galy,(X) into

a quasi-compact topological group.

We now recall one of the most important property of the Lascar group, and then compare with
the (newly proved) relativized one. Let 7 : Aut(€) — Gal(T) be the natural projection map and
7y : Aut(€) — Galp,(2) be the natural projection map.

Proposition 2.8. The following are equivalent.
(1) H < Galy,(T) is closed.
(2) 7= YH] = Aute(€) for some hyperimaginary e bounded over ().
Proposition 2.9. The following are equivalent.
(1) H < Galy,(X) is closed.
(2) 75 [H] = Aute(€) for some hyperimaginary e bounded over (), and one of the representatives of
e is a tuple in 3(C).
Sketch of the proof of Proposition 2.9. (1) = (2): v, '[H] is closed in Sy(b), thus {h(b) : h € H} is type-
definable over b. Also, Auty(€) < 75 '[H]. Then using some facts (please refer to [LL24]), 7' [H] =
Auty,, (€) for some (-type-definable equivalence relation E. It can be checked that bg is bounded over (.
(2) = (1): Say e = ag. We may assume that a is contained in a Lascar tuple b. Then (because b is a
Lascar tuple), v, '[H] = {p(z) € Sp(b) : E(x,a) C p(z’)}, where |2'| = |b| and x C 2’. Thus H is closed
in Gal,(%). O
By the previous proposition, the following definition seems to be a good choice for the ‘relativized’
bounded closure. We also can define dcl()) N’ Y and acl(@) N X similarly.

Definition 2.10. bdd(f)) N X is the set of all hyperimaginaries bounded over (), where one of the repre-
sentatives is a tuple in 3(€).

Again, we recall a fundamental fact on the Lascar group, and compare with the new, relativized one.

Proposition 2.11. Let 7 : Aut(€) — Galy,(T) be the natural projection.
(1) The closure of {id} in Galy(T') is w[Autpaacp) (€)].
(2) The connected component containing {id} in Galy(T') is w[Aut,eg)(€)].

Proposition 2.12. Let Y. be a partial type over § and 7 : Aut(€) — Gal,(X) the natural projection.
(1) The closure of {id} in Galy(X) is s [Autpaqp)ns(€)].
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(2) The connected component containing {id} in Galy, (%) is ms[Autacig)ns (€)].

Sketch of the proof of Proposition 2.12. (1) Since Galp,(X) is a topological group, the closure of {id}
is the intersection of all closed subgroups. But each of the closed subgroups is of the form

s |Aute(€)], where e € bdd(D) | .
(2) Again, since Galy,(X) is a topological group, The connected component containing {id} is the
intersection of all closed subgroups of finite indices. Thus bdd(@) [ X is replaced with acl(@) | %.
|

Finally, we can compare the following two theorems.

Theorem 2.13. (1) The following are equivalent.
(a) There is f € Autycip)(€) such that f(a) =b.
(b) a =5b, i.e. for any 0-definable finite equivalence relation E, E(a,b).
(2) The following are equivalent.
(a) There is f € Autpaq(p)(€) such that f(a) = b.
(b) a =XP b, i.e. for any )-type-definable bounded equivalence relation E, E(a,b).

Theorem 2.14. Let 3 be a partial type over §. For any tuples a and b in %(C),

(1) a =3 b if and only if there is f € Autuep)ns:(€) such that f(a) =b.
(2) a =P b if and only if there is f € Autyaapyns(€) such that f(a) =b.

Note that a =5 b or a =XP b implies that tp(a) = tp(b), hence we can get the following corollary easily
by letting ¥ = tp(a) = tp(b).

Corollary 2.15. For any tuples a and b in €,

(1) a =3 b if and only if tp(a) = tp(b) and there is f € Autyc@)nip(a)(€) such that f(a) = b.
(2) a =X b if and only if tp(a) = tp(b) and there is f € Autpaa(p)nip(a)(€) such that f(a) =b.

Above corollary and the following question is not mentioned in [LL24].

Question 2.16. (1) (Informal) Will Corollary 2.15 help or give more information in proving (or
disproving) that =5 and =XF are the same in simple theories?
(2) (Question of unexpected difficulty) {f | £(€) : f € Autf(€)} = Autfy,(X)?
Note that one direction, C is trivial. This question can be restated in the following way: If f
fixes all Lascar strong types in 3(€), then is there g that fixes all Lascar strong types in € and
coincides with f in ¥(€)?
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