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1 Introduction

The monotonicity theorem for o-minimal structures is a remarkable result pro-
viding a basis on which wide and deep studies on them are carried out. It is
well-known that a weakened version of monotonicity theorem holds for weakly
o-minimal theories. Then one question naturally arises, that is, does it hold
also for dp-minimal ordered abelian groups? Although partial results have been
given, the whole problem is still open. At RIMS Model Theory Workshop 2021,
Goodrick[3] gave an expansion of an ordered abelian group not admitting the
kind of monotonicity and raised a question whether or not it is dp-minimal. We
gave an answer to this question, i.e., its dp-rank is 2.

In this report, we are going to give a brief summary of the background of
the question and a part of the proof of our result showing that the dp-rank is 2
or more.

2 O-minimality and the monotonicity theorem

Among orders, we consider only dense linear ones without endpoints in this
article.

Definition 2.1. A structure equipped with an order M = (M;<,...) is said
to be o-minimal if any unary definable subset X C M can be partitioned into
finitely many points and intervals.

Example 2.2. The real field (R;<,+,-) is easily seen to be o-minimal by
Tarski’s celebrated quantifier elimination. The proof can be found in most
introductory textbooks on model theory.

Another example is Rexp, the real field augmented by the exponential func-
tion. It is a highly important result by Wilkie[7].
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The monotonicity theorem is a fundamental result on o-minimal structures.
It yields some important theorems such as the cell decomposition theorem, which
is a powerful tool for studies of o-minimal structures.

Theorem 2.3 (The monotonicity theorem[5]). Let M be an o-minimal struc-
ture and f: X — M a unary function definable in M. Then, X can be parti-
tioned into finitely many points and intervals so that, for each interval I, f|r is
continuous and either strictly increasing, strictly decreasing, or constant.

For further details, see van den Dries’ textbook]6].

Due to the importance of the monotonicity theorem, it is natural to ask
whether or not we can give a similar result for wider classes of ordered structures.
Actually, a local version of monotonicity can be shown for weakly o-minimal
theories.

Definition 2.4. An ordered structure M = (M; <,...) is weakly o-minimal if
any unary definable subset X C M can be partitioned into finitely many points
and convex sets.

A complete theory is said to be weakly o-minimal if all of its models are so.

Example 2.5. (Q; <,+, (—m, 7)), the ordered group of rational numbers with
a distincted subset (—m, ), is known to be weakly o-minimal. However, it is
not o-minimal since the convex set (—m, m) does not have its endpoints in the
universe Q.

It is also known that (R®®; < +, - (—, 7)) is weakly o-minimal where R?&
is the set of real algebraic numbers.

Although the monotonicity theorem itself is not true, its weakened form still
holds for weakly o-minimal theories.

Definition 2.6. A unary function f: X — M is locally increasing if for any
point a € X, f is strictly increasing on some sufficiently small neighborhood of
a.

Theorem 2.7 ([4]). Suppose that M is a structure with weakly o-minimal theory
and f: X — M a unary function definable in M. Then, X can be partitioned
into finitely many points and conver sets so that, for each convex sets C, f|c is
continuous and either locally increasing, locally decreasing, or locally constant.

Hence, weakly o-minimal theories have the property which should be called
local monotonicity.

3 Dp-minimality and local monotonicity conjec-
ture
Dose local monotonicity hold for a wider class? As to this question, it is conjec-

tured that ordered abelian groups satisfying a stability-theoretic property called
dp-minimality also have local monotonicity.



Definition 3.1. Let M be a structure (possibly without an order) and x a
cardinal. We say that M has dp-rank s or more if there exist a family of
formulas (pq (%, Yo ))aecr where |z| =1 and a family of tuples (by,i)aer,icw from
a monster model such that, for any function n: k — w, one can take a, from a
monster model which satisfies

E ooy, bei) <= n(a) =1 forall a <k and i <w.

Example 3.2. Weakly o-minimal theories are known to be dp-minimal. See
[1] for details. Other examples include strongly minimal theories, C-minimal
theories, and P-minimal theories.

Question 3.3. Let M = (M;<,+,...) be a dp-minimal expansion of an or-
dered abelian group. Is the following statement true?

Suppose that f: X — M is a unary function definable in M.
Then, X can be partitioned into finitely many definable subsets
X1,..., X, sothat, for each X;, f|x, is continuous and either locally
increasing, locally decreasing, or locally constant.

This problem is still open. See Goodrick’s article[3] for details. In there, He
gave an ordered abelian group augmented by a function without local mono-
tonicity and posed a question whether it is dp-minimal or not. If so, this struc-
ture would be a counterexample to the problem above. To see the details, we
will describe the ordered abelian group first.

Definition 3.4. We denote by R((¢)) the set of formal Laurent series over R,

that is,
R((t)) = {Zaiti |meZ,a; € R} .
The addition and the multiplication is defined in the same mannar as done
in polynomial rings.
The order is given in the following way: Y.~ a;t" < Y ;2 b;t" if and only
if there is an index k such that ax < by and a; = b; for all i < k.

One can see that R((t)) is an ordered field with the addition, the multipli-
cation and the order defined above. In addition, we introduce a function on it
which does not have local monotonicity (the definition of the function is slightly
different from that given by Goodrick(ibid.) but we believe this difference is not
essential.).

Definition 3.5. Let f: R((t)) — R((t)) be a function defined as:
f <Z aiti> = Z(—l)iaiti.

It is clear that f is a group homomorphism.



Proposition 3.6. For any a € R((t)), f is not monotone on any interval
including a.

Proof. Take an arbitrarily small positive element € from R((¢)) and let € =
3% eit! where e, > 0. One can suppose that m > 0. Then, we have

2] <lJel, [T < el
and
fla+2™) = fa) = f(t*™) = 2™ >0,
fla+mFh) = fla) = f(£*"F1) = —*"71 <0,
which prove the claim. |

Here is the question Goodrick gave;
Question 3.7. Is a structure (R((¢)); <, +, f) dp-minimal?

If it holds, then the structure gives a counterexample to Question 3.3.
Our result is:

Theorem 3.8. (R((¢)); <,+, f) has dp-rank 2.

In this report, we will give only the proof that shows it has dp-rank 2 or
more as the rest requires a much longer proof. First, we define two projection
functions.

Definition 3.9. 7w, m: R((¢)) — R((¢)) are functions defined in the following
way:

oo 00
) <Z aiti> = Z aiti
%

€27
™1 (Z aiti> = Z aiti
i i€27+1
It is easily seen that, for a € R((t)),
a—+ fla a— fla
mofa) = @ = 2T

Since the additive group R((t)) is divisible, it is meaningful and definable divid-
ing by 2. Hence, my and 7 are definable in the structure (R((¢)); <, +, f).

Proposition 3.10. The dp-rank of (R((t)); <,+, f) is 2 or more.
Proof. Define two formulas
©0(2, Y0, y1) = Yo < mo(z) < Y1, ©1(7, Y0, Y1) = Yo < m1(x) < Y.
For any n: 2 — w, we let a, be t21(0) 4 ¢201()+1 Then, we have
R((t) E @alan, t*72,8*) <= n(a) =i

forall « < 2 and 7 < w. [ |
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