Some characterization of locally o-minimal structures

Hisatomo Maesono Global Education Center, Waseda University 前園久智 早稲田大学グローバルエデュケーションセンター

概要

abstract Locally o-minimal structures are some local adaptation from o-minimal structures. However, there are examples of them whose theories have TP_2 . In this note, we characterize definably complete locally o-minimal structures under some additional conditions.

1. Introduction

We recall some definitions at first.

Definition 1. Let M be a densely linearly ordered structure without endpoints.

M is o-minimal if every definable subset of M^1 is a finite union of points and intervals.

M is locally o-minimal if for any element $a \in M$ and any definable subset $X \subset M^1$, there is an open interval $I \subset M$ such that $I \ni a$ and $I \cap X$ is a finite union of points and intervals.

M is uniformly locally o-minimal if for any formula $\varphi(x, \overline{y})$ over \emptyset and any $a \in M$, there is an open interval $I \ni a$ such that $I \cap \varphi(M, \overline{b})$ is a finite union of points and intervals for any $\overline{b} \in M^n$ where $\varphi(M, \overline{b})$ is the realization set of $\varphi(x, \overline{b})$ in M.

M is strongly locally o-minimal if for any $a \in M$, there is an open interval $I \ni a$ such that whenever X is a definable subset of M^1 , then $I \cap X$ is a finite union of points and intervals.

M is definably complete if any definable subset X of M^1 has the supremum and infimum in $M \cup \{\pm \infty\}$.

Example 2. [1], [2]

 $(\mathbb{R}, +, <, \mathbb{Z})$ where \mathbb{Z} is the interpretation of a unary predicate, and $(\mathbb{R}, +, <, \sin)$ are definably complete locally o-minimal structures.

And we recall some fundamental facts.

Fact 3. [1], [2]

Definably complete local o-minimality is preserved under elementary equivalence.

Proposition 4. [2]

Let M be a uniformly locally o-minimal structure. Suppose that M is ω -saturated. Then M is strongly locally o-minimal.

Here we recall types of locally o-minimal structures for the argument below.

Definition 5. Let M be a densely linearly ordered structure and $p(x) \in S_1(M)$.

We say that p(x) is cut over M if for any $a \in M$, if $a < x \in p(x)$, then there is $b \in M$ such that $a < b < x \in p(x)$, and similarly if $x < a \in p(x)$, then there is $c \in M$ such that $x < c < a \in p(x)$.

We say that $q(x) \in S_1(M)$ is noncut over M if q(x) is not a cut type.

Here we consider nonisolated types only.

Cut types are called *irrational cuts*, and noncut types are called *rational cuts* by some people.

There are several kinds of noncut types.

Definition 6. Let M be locally o-minimal and $p(x) \in S_1(M)$ be noncut.

There are four kinds of noncut types.

```
p(x) \vdash \{m < x < a : m < a \in M\} \text{ for some fixed } a, or \{a < x < m : a < m \in M\} \text{ for some fixed } a.
```

Here we call these types a bounded left noncut type and a bounded right noncut one.

$$p(x) \vdash \{m < x : m \in M\} \text{ or } \{x < m : m \in M\}.$$

We call these types unbounded noncut types.

It is known that o-minimal structures have a small amount of definable sets. However, locally o-minimal structures have definable complexity to some extent.

Definition 7. An independence pattern of length κ is a sequence of pairs $(\phi^{\alpha}(\bar{x}, \bar{y}), k^{\alpha})_{\alpha < \kappa}$ of formulas such that there exists an array $\langle \bar{b}_{i}^{\alpha} : \alpha < \kappa, i < \lambda \rangle$ for some $\lambda \geq \omega$ such that :

- · for each $\alpha < \kappa$, the set $\{\phi^{\alpha}(\bar{x}, \bar{b}_{i}^{\alpha}) : i < \lambda\}$ is k^{α} -inconsistent, and
- · for all $\eta \in \lambda^{\kappa}$, the set $\{\phi^{\alpha}(\bar{x}, \bar{b}^{\alpha}_{\eta(\alpha)}) : \alpha < \kappa\}$ is consistent.

A thoery T is inp-minimal if there is no inp-pattern of length two in a single variable x.

A theory T has the tree property of the second kind (TP_2) if there is an inp-pattern of size ω for which the formulas $\phi^{\alpha}(\bar{x}, \bar{y})$ in the definition above are all equal to some $\phi(\bar{x}, \bar{y})$.

Fact 8. [12], [13]

There are locally o-minimal structures whose theories have TP_2 .

For example, some modified simple product by M.Fujita, and some ultraproduct of o-minimal

structures by A. Tsuboi and the author.

These examples indicate that it is difficult to characterize locally o-minimal structures by using the definition only. Thus we try to characterize them by stability theoretic properties under some additional conditions.

2. Characterization of locally o-minimal structures under some conditions.

In this section, we try to characterize definably complete locally o-minimal structures in relation to dp-rank. In particular, we investigate locally o-minimal structures whose theories are dp-minimal at first.

There are many research papers about dp-minimal structures. Especially, we refer to the argument by P.Simon here.

Definition 9. Let $p(\bar{x})$ be a partial type over a set $A \subset \mathcal{U}$ where \mathcal{U} is the monster model. We define the dp-rank of $p(\bar{x})$ as follows:

Let μ be a cardinal.

We say that $p(\bar{x})$ has dp-rank $< \mu$ if given any realization \bar{a} of p and any family $(I_t : t < \mu)$ of mutually A-indiscernible sequences, at least one of them is indiscernible over $A\bar{a}$.

Dp-minimal theories are theories in which all 1-types have dp-rank 1 (dp-rk(x = x) = 1).

Fact 10. e.g. [4]

A theory T is dp-minimal

if and only if

T is NIP and inp-minimal.

We argue about the definability of types first.

Fact 11. Let M be locally o-minimal and $p(x) \in S_1(M)$ be bounded noncut.

Then p(x) is definable.

For instance, let $p(x) \vdash \{m < x < a : m < a \in M\}$ for some fixed a.

For any L-formula $\phi(x, \bar{y})$,

$$d\phi(\bar{y}) := \exists z \forall x (z < a \land z < x < a \longrightarrow \phi(x, \bar{y})).$$

In o-minimal structures, unbounded noncut types are also definable. But they are not definable in locally o-minimal structures generally.

Proposition 12. Let M be definably complete locally o-minimal and Th(M) be dp-minimal. And let $p(x) \in S_1(M)$ be unbounded noncut. Then p(x) is definable.

Proof;

Let $p(x) \vdash \{m < x : m \in M\}$. And let $E(\bar{y}, \bar{z})$ be the equivalence relation defined on tuples by $E(\bar{b}, \bar{b}')$ if and only if $\exists z \forall x (x > z \longrightarrow (\phi(x, \bar{b}) \longleftrightarrow \phi(x, \bar{b}')))$.

Let \bar{b} and \bar{b}' have the same type over M_0 for some model M_0 . We denote the formula $\phi(x,\bar{b}) \triangle \phi(x,\bar{b}') := (\phi(\bar{x},\bar{b}) \wedge \neg \phi(\bar{x},\bar{b}')) \vee (\neg \phi(\bar{x},\bar{b}) \wedge \phi(\bar{x},\bar{b}'))$. Now as \bar{b} and \bar{b}' have the same Lascar strong type over M_0 , there is an indiscernible sequence $\{\bar{b}_i : i < \omega\}$ over M_0 such that $\bar{b}_0 = \bar{b}$ and $\bar{b}_1 = \bar{b}'$.

Consider the set of formulas $\Phi(x) := \{ \phi(x, \bar{b}_{2i}) \triangle \phi(x, \bar{b}_{2i+1}) : i < \omega \}$. If $\Phi(x)$ is consistent, then the alternation rank of $\phi(x, \bar{y})$ is infinite. Thus it contradicts that Th(M) is NIP. So the formula $\phi(x, \bar{b}) \triangle \phi(x, \bar{b}')$ divides over M_0 . Thus the set of formulas $\Phi(x)$ is k-inconsistent for some $k < \omega$.

If the realization set $\phi(M, \bar{b}) \triangle \phi(M, \bar{b}')$ is cofinal in M, then for any $i < \omega$, the set $\phi_i(M) := \phi(M, \bar{b}_{2i}) \triangle \phi(M, \bar{b}_{2i+1})$ is cofinal. Thus we can take infinitely many intervals which have realizations of ϕ_i for any $i < \omega$. Then this contradicts the inp-minimality.

Thus this set $\phi(M, \bar{b}) \triangle \phi(M, \bar{b}')$ cannot be cofinal, so \bar{b} and \bar{b}' are E-equivalent. Then $E(\bar{y}, \bar{z})$ is a bounded equivalence relation. As E is definable, E has finitely many classes. By Compactness theorem, E has n_{ϕ} classes for some $n_{\phi} < \omega$.

Let $\psi(x, \bar{y}) \in L$ -formula. And let $\{\bar{m}_i : i < n_{\psi}\} \subset M$ be the set of representatives of the E-classes. We can take $d\psi(\bar{y}) := \exists z \forall x (x > z \longrightarrow \bigvee_{i < n_{\psi}} (\psi(x, \bar{y}) \longleftrightarrow \psi(x, \bar{m}_i))$.

And I show the next theorem.

Theorem 13. Let M be a definably complete locally o-minimal and Th(M) be dp-minimal. Then M is uniformly locally o-minimal.

Sketch of proof;

Let $d \in M$ and we consider the bounded left noncut type $p(x) \in S_1(M)$ of d, so p(x) is definable over M. And we take a Morley sequence $\bar{b} := \{b_i : i < \omega\}$ of p(x) such that $b_i \models p(x) \mid M\{b_j : j < i\}$ where $p(x) \mid M\{b_j : j < i\}$ is definable over M, so it is M-invariant. We choose an element $b_i \in \bar{b}$ $(i \neq 0)$ and we denote $b_i := a$ and $\bar{b} := \{b_j : i \neq j, j < \omega\}$ in the following. So \bar{b} is indiscernible over M and is not indiscernible over Ma.

Let $\phi(x, \overline{y}) \in L$ -formula with |x| = 1. Now we consider $q(\overline{y}) \in S_k(M\overline{b})$ which is finitely satisfiable in M and its global extension $q'(\overline{y}) \in S_k(\mathcal{U})$ which is also finitely satisfiable in M.

And let $q'(\bar{y}) \vdash \phi^l(a, \bar{y})$ where l = 0, 1, that is, $\phi^0(a, \bar{y}) := \neg \phi(a, \bar{y})$ and $\phi^1(a, \bar{y}) := \phi(a, \bar{y})$.

If there is $\overline{c} \in \mathcal{U}$ such that $q(\overline{y}) \vdash \neg \phi^l(a, \overline{y})$ and $\models q(\overline{c})$, then we take a Morley sequence I of $q'(\overline{y})$ over everything and let $\overline{c}' := \overline{c} + I$. Thus as $\operatorname{tp}(\overline{c}'/\mathcal{U})$ is finitely satisfiable in M, \overline{b}

and \overline{c}' are mutually indiscernible over M and neither \overline{b} nor \overline{c}' is indiscernible over Ma. This contradicts the dp-minimality of T.

So by the compactness theorem, there are $\theta_q(\bar{y}) \in q(\bar{y})$ and $\psi_q(x) \in \operatorname{tp}(a/M\bar{b})$ such that $\models \theta_q(\bar{y}) \land \psi_q(x) \longrightarrow \phi^l(x,\bar{y})$. Let $\theta_q(\bar{y}) := \theta_q(\bar{y},\bar{b}_0\bar{b}_1\bar{m}_y)$ and $\psi(x) := \psi(x,\bar{b}_0\bar{b}_1\bar{m}_x)$ where $\bar{b}_0 := b_0^0 < b_0^1 < \dots < b_0^{k'-1}$ and $\bar{b}_1 := b_1^0 < b_1^1 < \dots < b_1^{l'-1}$, and $\bar{b}_0 < a = b_i < \bar{b}_1$ in the original \bar{b} and $\bar{m}_x, \bar{m}_y \in M$.

As the original \bar{b} is a Morley sequence of extensions of types by the defining schema, we can check the next claim.

Claim 1. $\operatorname{tp}(\bar{b}_1 a/\bar{b}_0 M)$ is an heir of $\operatorname{tp}(\bar{b}_1 a/M)$.

As $\operatorname{tp}(\bar{b}_1 a/\bar{b}_0 M)$ is an heir of $\operatorname{tp}(\bar{b}_1 a/M)$ and $q(\bar{y})$ are finitely satisfiable in M, for any $\bar{m} \in M$ with $\models \theta_q(\bar{m}, \bar{b}_0 \bar{b}_1 \bar{m}_y)$, there is $\bar{m}_0 \in M$ such that:

 $\models \forall x \forall \bar{y} \{ \theta_q(\bar{y}, \bar{m}_0 \bar{b}_1 \bar{m}_y) \land \psi_q(x, \bar{m}_0 \bar{b}_1 \bar{m}_x) \longrightarrow \theta^l(x, \bar{y}) \} \land \{ \theta_q(\bar{m}, \bar{m}_0 \bar{b}_1 \bar{m}_y) \land \psi_q(a, \bar{m}_0 \bar{b}_1 \bar{m}_x) \longrightarrow \theta^l(a, \bar{m}) \}, \text{ that } is, \dots \dots (*)$

 $\forall x \forall \overline{y} \left\{ \theta_q(\overline{y}, \overline{m}_0 \overline{z}_1 \overline{m}_y) \wedge \psi_q(x, \overline{m}_0 \overline{z}_1 \overline{m}_x) \longrightarrow \theta^l(x, \overline{y}) \right\} \wedge \left\{ \theta_q(\overline{m}, \overline{m}_0 \overline{z}_1 \overline{m}_y) \wedge \psi_q(x, \overline{m}_0 \overline{z}_1 \overline{m}_x) \longrightarrow \theta^l(x, \overline{m}) \right\} \in \operatorname{tp}(\overline{b}_1 a / M).$

Now we denote $\tilde{\theta}_q^{\bar{m}}(\bar{y}) := \theta_q(\bar{y}, \bar{m}_0 \bar{b}_1 \bar{m}_y)$ and $\tilde{\psi}_q^{\bar{m}}(x) := \psi_q(x, \bar{m}_0 \bar{b}_1 \bar{m}_x)$.

Let $S \subset S_{\bar{y}}(M\bar{b})$ be the set of types finitely satisfiable in M. It is closed set, thus compact and contains all types realized in M. We can extract from the family $\{\tilde{\theta}_q^{\bar{m}}(\bar{y}) : q(\bar{y}) \in S\}$ a finite subcover $\{\tilde{\theta}_q^{\bar{m}}(\bar{y}) : q(\bar{y}) \in S^*\}$. For l = 0, 1, let $S_l^* = \{q(\bar{y}) \in S^* : (*) \text{ holds for } l\}$. And we define $\tilde{\theta}_l(\bar{y}) = \bigvee_{q \in S_l^*} \tilde{\theta}_q^{\bar{m}}(\bar{y})$ and $\tilde{\psi}(x) = \bigwedge_{q \in S_l^*} \tilde{\psi}_q^{\bar{m}}(x)$.

We have that $\tilde{\theta}_0(\bar{y})$ and $\tilde{\theta}_1(\bar{y})$ cover S, in particular, $\tilde{\theta}_0(M) \cup \tilde{\theta}_1(M) = M^{|y|}$. Also for l = 0, 1, $\tilde{\psi}(x) \in \operatorname{tp}(a/M\bar{b})$ and $\mathcal{U} \models \forall \bar{y} \, \forall x \, \{ \tilde{\theta}_l(\bar{y}) \wedge \tilde{\psi}(x) \longrightarrow \phi^l(x, \bar{y}) \}$. And let the parameters of $\tilde{\theta}_l(\bar{y})$ and $\tilde{\psi}(x)$ outside M be \bar{b}'_1 where $a < \bar{b}'_1$ in the original \bar{b} .

By the same argument above, $\operatorname{tp}(\overline{b}'_1/a M)$ is an heir of $\operatorname{tp}(\overline{b}'_1/M)$, so $\tilde{\psi}(x)$ is satisfiable in M. As \overline{b}'_1a is a Morley sequence by definability, the next claim is checked.

Claim 2. There is $m_l \in M$ such that for any $m \in M$ with $m_l < m < d$, $\models \tilde{\phi}(m)$.

Thus we can choose a point $m_l \in M$ such that for any $\bar{m}' \in M$, either for any point m with $m_l < m < d$, $\models \neg \phi(m, \bar{m}')$ or for any point m with $m_l < m < d$, $\models \phi(m, \bar{m}')$.

If we consider the bounded right noncut type of d over M, then we can take the formulas which work like $\tilde{\psi}(x)$ and $\tilde{\theta}_l(\bar{y})$ by the same way for the formula $\phi(x,\bar{y})$.

Then M is a unifromly locally o-minimal structure.

Remark 14. P.Simon proved the next Lemma.

In the proof above, $p(x) = \operatorname{tp}(a/M)$ is definable over M, but $\operatorname{tp}(a/\overline{b}M)$ is not definable over M.

Definition 15. Let $p(\bar{x})$ and $q(\bar{y})$ be global invariant types.

 $p(\bar{x}) \otimes q(\bar{y})$ denotes $\operatorname{tp}(\bar{a}\bar{b}/\mathcal{U})$ where $\bar{b} \models q$ and $\bar{a} \models p \mid \mathcal{U}\bar{b}$.

We say that $p(\bar{x})$ and $q(\bar{y})$ commute if $p(\bar{x}) \otimes q(\bar{y}) = q(\bar{y}) \otimes p(\bar{x})$, and we say that $p(\bar{x})$ and $q(\bar{y})$ commute over M if $p(\bar{x}) \otimes q(\bar{y}) \upharpoonright M = q(\bar{y}) \otimes p(\bar{x}) \upharpoonright M$.

Lemma 16. [5] Let T be any theory.

An M-invariant type $p(\bar{x})$ is definable if and only if for every M-finitely satisfiable type $q(\bar{y})$, $p(\bar{x}) \otimes q(\bar{y}) \upharpoonright M = q(\bar{y}) \otimes p(\bar{x}) \upharpoonright M$.

3. Some characterization about invariant extensions of types

There is a result about invariant extensions of types in dp-minimal theories by P.Simon.

Theorem 17. [5] Let T be any theory. And let $p(\bar{x})$ be a global M-invariant type of dp-rank = 1.

Then $p(\bar{x})$ is either definable over M or finitely satisfiable in M.

I try to characterize invariant extensions of types in locally o-minimal structures. Here I consider this problem for 1-variable types under the condition that T is NIP only.

Fact 18. Let T be definably complete locally o-minimal and NIP. And let $M \prec \mathcal{U} \models T$. If $p(x) \in S_1(\mathcal{U})$ is M-invariant and both p(x) and $p(x) \upharpoonright M$ are complete by the order

then p(x) is either definable over M or finitely satisfiable in M.

Even if either p(x) or $p(x) \upharpoonright M$ is not complete by the order formulas, there are cases in which p(x) is definable over M or finitely satisfiable in M. Here I can not explain in detail.

4. Further problems

I continue to characterize locally o-minimal structures whose theories are dp-minimal, or finite dp-rank. After that I consider this problem under weaker conditions, for example, the theory is NIP and some additional conditions.

References

formulas,

[1] C.Toffalori and K.Vozoris, *Note on local o-minimality*, Math.Log.Quart., 55, pp 617–632, 2009.

- [2] T.Kawakami, K.Takeuchi, H.Tanaka and A.Tsuboi, *Locally o-minimal structures*, J. Math. Soc. Japan, vol.64, no.3, pp 783–797, 2012.
- [3] S.Shelah, Strongly dependent theories, Israel J. Math., vol. 204, pp 1–83, 2014.
- [4] P.Simon, On dp-minimal ordered structures, J. Symb. Logic, vol.76, no.2, pp 448-460, 2011.
- [5] P.Simon, *Dp-minimality*: invariant types and dp-rank, J.Symb.Logic, vol.79, no.4, pp 1025–1045, 2014.
- [6] P.Simon and S.Starchenko, On forking and definability of types in some dpminimal theories, J. Symb. Logic, vol.79, no.4, pp 1020–1024, 2014.
- [7] A.Chernikov and I.Kaplan, Forking and dividing in NTP₂ theories, J. Symb. Logic, vol.77, no.1, pp 1–20, 2012.
- [8] A.Chernikov, Theories without the tree property of the second kind, Ann. Pure. and Appl. Logic, vol.165, pp 695-723, 2014.
- [9] P.A.Estevan and I.Kaplan, Non-forking and preservation of NIP and dp-rank, Annals.P.A.Logic, 172, pp 1-30, 2021.
- [10] A.Dolich, J.Goodrick and D.Lippel, *Dp-minimality*: basic facts and examples, Notre Dame J. Formal Logic, vol.52, no.3, pp 267–288, 2011.
- [11] I.Kaplan and P.Simon, Witnessing Dp-rank, Notre Dame J. Formal Logic, vol.55, no.3, pp 419-429, 2014.
- [12] M.Fujita, Simple product and locally o-minimal theories, preprint.
- [13] H.Maesono, On ultraproducts of o-minimal structures, RIMS Kôkyûroku, to appear.
- [14] L.van den Dries, *Tame topology and o-minimal structures*, London Math. Soc. Lecture Note Ser, 248, Cambridge University Press, 1998.