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abstract Locally o-minimal structures are some local adaptation from o-minimal
structures. However, there are examples of them whose theories have T'P,. In this note,
we characterize definably complete locally o-minimal structures under some additional
conditions.

1. Introduction

We recall some definitions at first.

Definition 1. Let M be a densely linearly ordered structure without endpoints.

M is o-minimal if every definable subset of M1 is a finite union of points and intervals.

M is locally o-minimal if for any element a € M and any definable subset X C M*, there
is an open interval I C M such that I 5 a and I N X is a finite union of points and intervals.

M is uniformly locally o-minimal if for any formula p(z, %) over () and any a € M, there
is an open interval I 3 a such that I N (M, b) is a finite union of points and intervals for any
b€ M™ where p(M,b) is the realization set of p(z,b) in M.

M is strongly locally o-minimal if for any a € M, there is an open interval I 5 a such that
whenever X is a definable subset of M!, then I N X is a finite union of points and intervals.

M is definably complete if any definable subset X of M! has the supremum and infimum
in M U{£o0}.

Example 2. [1], [2]
(R,+,<,Z) where Z is the interpretation of a unary predicate, and (R,+,<,sin) are

definably complete locally o-minimal structures.
And we recall some fundamental facts.

Fact 3. [1], [2]



Definably complete local o-minimality is preserved under elementary equivalence.

Proposition 4. [2]
Let M be a uniformly locally o-minimal structure. Suppose that M is w-saturated. Then M

is strongly locally o-minimal.
Here we recall types of locally o-minimal structures for the argument below.

Definition 5. Let M be a densely linearly ordered structure and p(x) € S1(M).

We say that p(z) is cut over M if for any a € M, if a < x € p(z), then there is b € M
such that a < b < = € p(x), and similarly if x < a € p(z), then there is ¢ € M such that
r<c<aé€p(x).

We say that ¢(z) € S1(M) is noncut over M if g(x) is not a cut type.

Here we consider nonisolated types only.

Cut types are called irrational cuts, and noncut types are called rational cuts by some

people.
There are several kinds of noncut types.

Definition 6. Let M be locally o-minimal and p(z) € S;(M) be noncut.
There are four kinds of noncut types.
px)F{m <z <a:m<aec M} for some fixed a,
or {fa <z <m:a<me M} for some fixed a.
Here we call these types a bounded left noncut type and a bounded right noncut one.
px)F{m<z:meM}or{z<m:meM}
We call these types unbounded noncut types.

It is known that o-minimal structures have a small amount of definable sets. However,

locally o-minimal structures have definable complexity to some extent.

Definition 7. An independence pattern of length k is a sequence of pairs (¢*(Z, 7), k%) a<x
of formulas such that there exists an array (b¢ : a < ,4 < ) for some A > w such that :
- for each a < , the set {¢*(F,b?) : i < A} is k%inconsistent, and
- for all n € A, the set {gba(f,_g(a)) ta < Kk} is consistent.
A thoery T is inp-minimal if there is no inp-pattern of length two in a single variable .
A theory T has the tree property of the second kind (1'Py) if there is an inp-pattern of

size w for which the formulas ¢“(Z, ) in the definition above are all equal to some ¢(Z, 7).

Fact 8. [12], [13]
There are locally o-minimal structures whose theories have T Ps.

For example, some modified simple product by M.Fugjita, and some ultraproduct of o-minimal



structures by A.Tsuboi and the author.

These examples indicate that it is difficult to characterize locally o-minimal structures by
using the definition only. Thus we try to characterize them by stability theoretic properties

under some additional conditions.

2. Characterization of locally o-minimal structures under some con-
ditions.

In this section, we try to characterize definably complete locally o-minimal structures in
relation to dp-rank. In particular, we investigate locally o-minimal structures whose theories
are dp-minimal at first.

There are many research papers about dp-minimal structures. Especially, we refer to the

argument by P.Simon here.

Definition 9. Let p(Z) be a partial type over a set A C U where U is the monster model.
We define the dp-rank of p(Z) as follows :
Let p be a cardinal.
We say that p(Z) has dp-rank < u if given any realization a of p and any family (I; : t < p)
of mutually A -indiscernible sequences, at least one of them is indiscernible over Aa.

Dp-minimal theories are theories in which all 1-types have dp-rank 1 (dp-rk(z =z) =1).

Fact 10. e.g. [4]

A theory T is dp-minimal
if and only if

T is NIP and inp-minimal.

We argue about the definability of types first.

Fact 11. Let M be locally o-minimal and p(x) € S1(M) be bounded noncut.
Then p(z) is definable.
For instance, let p(x) F{m <z <a : m<ae M} for some fized a.
For any L-formula ¢(z,7),
do(g) = FVax(z <ahz<z<a— ¢(x,7)).

In o-minimal structures, unbounded noncut types are also definable. But they are not

definable in locally o-minimal structures generally.

Proposition 12. Let M be definably complete locally o-minimal and Th(M) be dp-minimal.
And let p(z) € S1(M) be unbounded noncut.



Then p(z) is definable.

Proof ;

Let p(x) F {m <z : m € M}. And let E(y,Zz) be the equivalence relation defined on tuples
by E(b,V') if and only if 32V (x> 2z — (¢(x,b) < ¢(x,V'))).

Let b and b’ have the same type over My for some model My. We denote the formula
Az, b) A d(a, V) = (d(Z,b) A=p(Z,0') )V (—p(Z,b) Ap(Z,b')). Now asb and b’ have the same
Lascar strong type over My, there is an indiscernible sequence {l_)Z 14 <w} over My such that
bo=">b and b, =b'.

Consider the set of formulas ®(z) := { ¢(x,ba;) A (x,baiv1) 1 i <w}. If B(x) is consistent,
then the alternation rank of ¢(x,q) is infinite. Thus it contradicts that Th(M) is NIP. So
the formula ¢(x,b) A ¢(z,b') divides over My. Thus the set of formulas ®(x) is k-inconsistent
for some k < w.

If the realization set ¢p(M,b) /N ¢(M,b') is cofinal in M, then for any i < w, the set ¢;(M) :=
A(M,bg;) AN G(M,baiy1) is cofinal. Thus we can take infinitely many intervals which have
realizations of ¢; for any i < w. Then this contradicts the inp-minimality.

Thus this set ¢(M,b) A G(M,b') cannot be cofinal, so b and b are E-equivalent. Then
E(7,%) is a bounded equivalence relation. As E is definable, E has finitely many classes. By
Compactness theorem, E has ng classes for some ngy < w.

Let ¢(z,y) € L-formula. And let {m; : i < ny } C M be the set of representatives of the
E-classes. We can take dip(3y) := JzVa(x > z — \/an (Y(x,G) +— P(x,m;)). |

And I show the next theorem.

Theorem 13. Let M be a definably complete locally o-minimal and Th(M) be dp-minimal.

Then M is uniformly locally o-minimal.

Sketch of proof ;

Let d € M and we consider the bounded left noncut type p(x) € Si(M) of d, so p(x)
is definable over M. And we take a Morley sequence b := {b; : i < w} of p(x) such that
b; = p(x) | M{b; : j < i} where p(x) | M{b; : j < i} is definable over M, so it is M -invariant.

We choose an element b; € b (i # 0) and we denote b; :=a and b := {b; : i # j,j < w} in
the following. So b is indiscernible over M and is not indiscernible over Ma.

Let ¢(x,7) € L-formula with |z | = 1. Now we consider q(§j) € Sx(MDb) which is finitely
satisfiable in M and its global extension q'(§) € Si(U) which is also finitely satisfiable in M.
And let ¢'(§) F ¢!(a, i) where I = 0,1, that is, ¢°(a,7) = —¢(a,y) and ¢*(a, ) := é(a,F).
If there is € € U such that q(§) F —¢!(a,7) and = q(¢), then we take a Morley sequence I
of ¢'(ij) over everything and let @ := &+ I. Thus as tp(¢' /U) is finitely satisfiable in M, b
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and @ are mutually indiscernible over M and neither b nor € is indiscernible over Ma. This
contradicts the dp-minimality of T .

So by the compactness theorem, there are 0,(§) € q(§) and ¥,(x) € tp(a/Mb) such that
= 0,(9) A Yg(x) — ¢ (x,9). Let 0,(3) = 0,(7, bobimy) and ¥(z) := 3 (x, bobyim,) where
bop = b < bh < - < BT and by =00 < bl < oo < WYY and by < @ = b; < by in the
original b and m,, my € M.

As the original b is a Morley sequence of extensions of types by the defining schema, we can
check the next claim.

Claim 1. tp(bia/boM) is an heir of tp(bia/M).

As tp(bia/by M) is an heir of tp(bia/M) and q(§) are finitely satisfiable in M, for any
m € M with = 9q(ﬁ1,l_)051ﬁ1y), there is g € M such that :

= Va2V {04 (7, mobiimy ) Ay (2, mobring ) — 6'(x, §) YA {8y (1, mobiimy ) Aty (a, mobiim,) —
0'(a,m)}, that is, -~ (%)

VaVG {0,(, MoZ1imy) Aty (2, MoZ1My) — 01(x, §) } A {04 (0, o Z1my) A by (2, MoZ1 M) —
0'(z,m) } € tp(bra/M).

Now we denote ég@(gj) := 0,(y, mob1m,) and 1[12_1(3:) 1= 1y (2, Mob1My).

Let S C Sz(M b) be the sct of types finitely satisfiable in M. It is closed set, thus compact
and contains all types realized in M. We can extract from the family {éqﬁl(ﬂ) :q(y) €S} a
finite subcover {GN;']T”(;U) 1q(y) € S*}. Forl=0,1, let S; = {q(y) € S* : (x) holds for l}.And
we define 9~1,(3]) = \/qes; é;ﬁ(?j) and 15(37) = /\qES* @T(fﬁ)

We have that 0y(7) and 01(5) cover S, in particular, Oy (M)U6, (M) = M. Also forl = 0,1,
Y(z) € tp(a/MDb) and U =gVz {6,(7) A)(x) — ¢'(x,7) }. And let the parameters of 6;(7)
and ¢ (z) outside M be b, where a < by in the original b.

By the same argument above, tp(b,/a M) is an heir of tp(b, /M), so i(x) is satisfiable in
M. As bia is a Morley sequence by definability, the next claim is checked.

Claim 2. There is m; € M such that for any m € M with m; < m < d, = ¢(m).

Thus we can choose a point m; € M such that for any m' € M, either for any point m with
m; < m <d, E—¢(m,m') or for any point m with m; < m < d, E ¢(m,m’).

If we consider the bounded right noncut type of d over M, then we can take the formulas
which work like 1(x) and 0,(§) by the same way for the formula ¢(z, 7).

Then M is a unifromly locally o-minimal structure. |

Remark 14. P.Simon proved the next Lemma.
In the proof above, p(x) = tp(a/M) is definable over M, but tp(a/bM) is not definable over
M.



Definition 15. Let p(Z) and ¢(y) be global invariant types.

p(Z) ® q(§) denotes tp(ab/U) where b = q and @ = p|Ub.

We say that p(Z) and q(y) commute if p(Z) ® q(g) = q(7) @ p(Z), and we say that p(T) and
4(7) commute over M if p(z) & ¢(7) | M = q(7) © p(7) | M.

Lemma 16. [5] Let T be any theory.
An M -invariant type p(Z) is definable if and only if for every M-finitely satisfiable type q(7),
p(@) @ q(H) I M =q(j) @p(T) | M.

3. Some characterization about invariant extensions of types

There is a result about invariant extensions of types in dp-minimal theories by P.Simon.

Theorem 17. [5] Let T be any theory. And let p(Z) be a global M -invariant type of dp-
rank=1.

Then p(Z) is either definable over M or finitely satisfiable in M.

I try to characterize invariant extensions of types in locally o-minimal structures. Here I

consider this problem for 1-variable types under the condition that 7" is NIP only.

Fact 18. Let T be definably complete locally o-minimal and NIP. And let M <U = T.
If p(x) € S1(U) is M-invariant and both p(z) and p(x) | M are complete by the order
formulas,

then p(x) is either definable over M or finitely satisfiable in M.

Even if either p(z) or p(x) | M is not complete by the order formulas, there are cases in

which p(z) is definable over M or finitely satisfiable in M. Here I can not explain in detail.

4. Further problems

I continue to characterize locally o-minimal structures whose theories are dp-minimal, or
finite dp-rank. After that I consider this problem under weaker conditions, for example, the

theory is NI P and some additional conditions.
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