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1 Introduction

This is an exposition of a joint work with Akito Tsuboi [4].
Let m < [ < w, and let R be an m-ary relation symbol. By an R-
hypergraph, we mean an R-structure where R is symmetric and irreflexive.
For a finite R-hypergraph X, we define ¢(X) and ne(X) as follows:

e(X) = HA € [X]": X = R(A)}
ne(X) = |{B € [X]™: X £ ~R(B)}.

Suppose X and Y are subsets of an R-hypergraph. We define e(X/Y') and
ne(X/Y) as follows:

e(X/Y)=|{Ac[XUY]":Y C A, XY | R(A)}|
ne(X/Y) = |{BE€[XUY]":Y C A, XY | -R(B)}|.

We write ne(X/y1, ..., yx) for ne(X/{y1,...,yx}), when Y is explicitly
given. We use e(X/yy, ..., yx) similarly.

Let A € [X]™. We call A an R-hyperedge if X = R(A). We call A an
—R-hyperedge if X = -R(A).

Let s be another integer. Let H]", be the class defined by:

X € Hj, if and only if whenever A C X with |A] = [ then e(A4) <

Y —s.

(m>Note that X € HJ, if and only if whenever A C X with |A| = [ then
ne(A4) > s.



Let K be an infinite class of finite R-structures.
M is a random structure for KC if

(1) M is countable,
(2) whenever A C finite M then A € K, and

(3) whenever A Cyinie M, A C B € K and B is finite then there is an
L-embedding f: B — M with f(z) =z for x € A.

A random structure for K is also known as a Fraissé limit of C and a
generic structure for K.

If K has HP, JEP, and AP then there is a random structure for .

Let A, B, C and D be R-structures. We say that D is a free amalgam
of Band C over Aif D = BUC, BNC = A as the sets of domains,
and R(D) = R(B) U R(C). We say that a class of finite R-structures I
has the free amalgamation property (FAP in short) if whenever D is a free
amalgam of B and C over A with A, B, C' € K then D € K.

Proposition 1 (K., Tsuboi[4]). We have the following:
(1) HT has the free amalgamation property if s < (;:_22).
(2) The amalgamation property fails in Hj", if s > (751__22).

Let F"; be arandom H]", hypergraph. Ffo are known as Henson graphs.
Conant proved that forking and dividing are different concepts in the the-
ory of Henson graph Ffo. While Hrushovski proved that each theory of
F{§ is a simple theory of SU-rank one if m > 3. Assuming m > 3, we
found that the theory of F} is simple theory of SU-rank one if s is small,
while dividing and forking are different concepts if s is large. The general
proofs are technical. We will explain the idea of the proof with certain

values of [, m, and s.

2 Main Theorem

Theorem 2 (K., Tsuboi [4]). Suppose 3 < m < I, and s < (7;__33). Then
Th(F) is simple with SU-rank one.



Theorem 3 (K., Tsuboi [4]). Suppose 3 <m <1, and (! 7°) <s< (!72).
Then diwviding and forking are different concepts in Th(F[’;)

Sketch of proof of Theorem 3. We work in a monster elementary extension
M of F".

Assume (;:_33) < s < (7;__22). Let s = (7;:33) + 3s¢g + r with r = 0,

1, or 2. With |Ag| =1 — 3, let p(x, A, b, c) be a formula describing the
following:

e ne(Ap) =0 (Ap is a complete R-hypergraph of size [ — 3),

e ne(Ap/b) =0,ne(Ay/c) =0 (Agb and Agc are complete R-hypergraphs
of size [ — 2),

e ne(Ag/b,c) = (1_3) (no R-hyperedges containing b and c),

m—2

e ne(Ag/x,b,c) = (Tln__?’?)) (no R-hyperedges containing b, ¢, and x),

e ne(Ag/x,b) = s1 (s1 =50+ 1if r =2, otherwise s; = s9),
e ne(Ag/x,c) = s,
e ne(Ag/x) =1y (ro =1if r =1, otherwise 7y = 0).

Claim A. There is an indiscernible sequence {(b;, ¢;) }icw, over Ag with the
following properties:

1. Agbic; = Agbc as R-structures.
2. ne(Ao/bi,c;) =0 if i < j <w (Full of R-hyperedges).

3. ne(Ao/b;, c;) = (Tln—_32) if 7 < i < w (No R-hyperedges, or full of
—R-hyperedges).

Properties 1-3 above specifies R-hyperedges and —R-hyperedges on
U = Ao U {b;}icw U {¢i}icw,- Assume further that U has no more R-
hyperedges than those specified by 1-3. Choosing D C U with |D| = [, we
can show that D € H[",. Therefore, U can be embedded in the monster
model M. By the form of the properties 1-3, {(b;, ¢;) }i<w can be chosen
to be an indiscernible sequence over Ay.

Claim B. ¢(x, Ay, b, c) divides over Ay.
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Claim C. Let {(b;, ¢;) }icw be an indiscernible sequence over Ay with (by, cy) =
(b, c). Suppose that ne(Ao/b;,c;) > so for alli # j with i,j € w. Then the
set {p(z, Ag, b, ¢;) 1 i € w} is consistent.

Claim D. Let A* = (Ag, b1, ba. .., by+) be a tuple with (Ao, b;, b;) = (A, b, c)
for 1 <i < j <n*, where n* is a sufficiently large integer. Let 1(x, A*)
be the formula

\/ 90(:13714071)17173)

1<i<j<n*
Then ¥ (x, A*) does not divide over Ay.

Supporse ¥ (x, A*) divides over Ay.

Choose an indiscernible sequence {(b; 1, ..., b;n*) }icw Over Ay witness-
ing the dividing with (bo1,...,b0m ) = (b1,...,bp*).

Suppose 1 <17 < 5 < n*. By indescernibility, we have the following:

(a) ne(Ag/byni. by ;) < so for n < n' <w, or

(b) ne(Ao/bni,bns ;) > so for n < n' < w.

Also,

(c) ne(Ag/by j, by i) < spforn <n' <w, or

(d) ne(Ao/by j, bnri) > sp for n < n' < w.

If (b) and (d) hold simultaneously, {p(z, Ao,bni,bnj) : n < w} is
consistent by Claim B. This implies {¢(z, Ag,bn1,...,bpne) 1 n < w} is
consistent, contradicting our assumption.

At least one of the following is true if 1 <¢ < j < n*:

(i) ne(Aog/bn i, by j) < 50 for n < n' <w.

(ii) ne(Ao/bn j, bn i) < sp for n < n’ < w.

Taking n* sufficiently large, we can use Ramsey’s Theorem to choose
1, J, k satisfying 1 < 1,7,k < n*,

ne(Ao/bo,i, b1,j) < so,

ne(AO/bl,j,bg,k) < S0, and

He(Ao/bOﬂ',bg’k) < So-

But we have ne(Agbg ;b1 ;b2%) < s. Since Agbg ;b1 ;b2 C M, we have
Apbo,ibi jba i € H",- This is a contradiction. O

We describe more detailed proofs of Claims B and C for parameters
m=4,1=8,and s =11, 12, 13.



Proof of Claims B, and C with m =4, [ =8, and s = 11. We have

(D=0 (-0 (-

and s = 11 =54 3-2. Aj has exactly [ — 3 = 5 elements. The formula
o(x, Ag, b, ¢) describes the following:

e Ag is a complete R-hypergraph of size 5, i.e., ne(Aq) = 0.
e Agb is a complete R-hypergraph, i.e., ne(Aq/b) = 0.
e Agcis a complete R-hypergraph, i.e., ne(Aq/c) = 0.
e Agx is a complete R-hypergraph, i.e., ne(Ay/z) = 0.

e There are no R-hyperedges containing both b and ¢, i.e., the number
of —R-hyperedges containing both b and ¢ is maximal. In other

words, ne(Ay/b, c) = (%) = 10.
e ne(Ap/xz,b) = 2.
o ne(Ayp/z,c) = 2.

e There are no R-edges containing b, ¢, and z, i.e., the number of
—R-hyperedges containing x, b and c is maximal. In other words,

ne(Ag/x,b,c) = (;:_33) = 5.

Consider D = Agzbe such that o(z, Ag, b, ¢) holds. We can make such
R-hypergraph D. We have |D| = 8, and

ne(D) > ne(Ay/bc) +ne(Ap/zbc) =10+ 5 > 11 = s.

Therefore, D € Hg,, and there is a copy of D in Fg,,.

We can assume that Agbc is a substructure of Fy ;.

Consider an indiscernible sequence {(b;, ¢;) }i<,, over Ag from Claim A.
We have the following:

e ne(Ap/bi,c;) =0ifi <j<w.

e ne(Ag/bi,c;) = () =10if j <i < w.



Suppose that there is an element d € M and there are integers 7, j with
i <j<w, (d, Ao, b, c;), and @(d, Ag, b;, c;). Consider Dy = Apdb;c;. We
have |D;| = 8 while

ne(D;) = ne(Ay) + ne(Ao/d, b;. c;)
+ne(Ao/d, b;) + ne(Ap/d. c;)ne(Ao/b;, ¢;)
+ne(Ag/d) + ne(Ag/b;) + ne(Ao/c;)
=0+5+2+24+04+04+0+0=9< 11 =s.

This contradicts with Dy € Hg,,. Therefore, (x, Ag. b, ¢) divides over
Ap. This finishes a proof of Claim B.

We turn to a proof of Claim C. Let {(b;,¢;)}ic, be an indiscernible
sequence over Ay with (b, cp) = (b, ¢). Suppose that ne(Ay/b;, ¢;) > so for
all © #£ j with 4,7 € w.

Our aim is to prove that 3 (z) = {¢(z, Ag, b;,¢;) 1 i < w} is consistent.

By strengthning the formula ¢, We can assume that o(x, Ay, b;, ¢;)
specifies all R-hyperedges and —R-hyperedges on Agzb;c;.

Put I = {b;}icw U{ci}icw and let U = Ay U I be a substructure of
M. Consider an extension Uz of R-structure U by adding R-hyperedges
specified in ¥ (x). We add no more R-hyperedges to Ux other than those
specified in Y(z). Note that there are no R-hyperedge Y on Ux such that
{z,d,d'} CY with d,d" € [ and d # d'.

We show that any D C Uz with |D| = 8 belongs to Hg ;. Then z can
be embedded to the monster model.

There are several cases to consider.

Case Ag C D. Since |D — Ay| = 3, one of the following holds in this
case.

1. D= AobiCjLL’.
3. D = Aycicjr with ¢ < j.

Note that 2 and 3 are essentially the same case.
Suppose D = Agb;cjx. If i = j then p(x, Ao, b;, ¢;) holds in Uz. Hence,
ne(D) > 11 = s.



If i # 7 then ne(Ay/b;,c;) > so = 2 by the assumption. Also,
ne(Ao/b;. c;,x) = () = 5 by the definition of the structure Uz. Hence,

ne(D) > ne(Ag/bi, c;,x) +ne(Ao/bi, ) + ne(Ag/ci, ) + ne(Ao/bi, ;)
>5+2+2+2=11=s.

Now, suppose D = Apb;b;jx with ¢ # j.

First, we claim that ne(Ay/b;,b;) > so = 2 for any ¢ < j. Note that
ne(Ao/b;.b;) = ne(Ao/bg,b1) by indiscernibility. So, otherwise, we have
ne(Ag/b;,b;) < 2 for any ¢ < j. Consider Dy = Apbobibe. We have
ne(Ag) = 0, ne(Agy/b;) = 0 for any i. Hence,

He(Do) = Ile(Ao/bo, bl, bg) + Ile(Ao/bo, b1> + Ile(Ao/bl, bg) + Ile(Ao/bo, b2)
<5+2+2+2=11=s.

But since Dy C M, Dy should be a member of HJ’. A contradiction.
Note that ne(Ay/b;, b;, ) = 5. So, we have

HG(D) 2 He(Ao/bi,bj,l') + Ile(Ao/bl',.T) + Ile(A()/bj,LU) + Ile(A()/bi, bj)
>0+2+2+2=11=s.

Case Ay — D is non-empty. Choose a € Ay — D. If + € D then
D C M. Then D € HJ,. So, we can assume that z € D. Consider a map
o : D — M such that o(z) = a, and o is an identity map on D —{z}. o is
clearly an injective map. We claim that o is an R-homomorphism. That
is, any R-hyperedge on D is mapped to an R-hyperedge on o(D). Let Y
be an R-hyperedge on D. If x ¢ Y, then oY = Y and there is nothing
to prove. If x € Y, Y = Ay U{z} with A C Ay or Y = Ay U{z,d}
with Ay C Ay and d € I. In either cases, Y is mapped to an R-hyperedge
in M. We have e(D) < e(a(D)). Therefore, ne(c(D)) < ne(D). Since
o(D) C M, we have s < ne(o(D)). Therefore, s < ne(D) and hence
D e M. l

Proof of Claims B, and C with m =4, [ =8, and s = 12. We have

(D=0 (-0 (-

and s=11=5+3-24 1.
Ap has exactly | — 3 = 5 elements. The formula ¢(x, Ay, b, ¢) describes
the following:



e Ay is a complete R-hypergraph of size 5, i.e., ne(Ay) = 0.
e Agb is a complete R-hypergraph, i.e., ne(Aq/b) = 0.

e Aycis a complete R-hypergraph, i.e., ne(A4q/c) = 0.

e ne(Ap/x) =1.

o ne(Ag/b,c) = (72 = 10.

m—2

(

(

o ne(Ag/z,b) = 2.

o ne(Ag/z,c) = 2.
(

e ne(Ag/z,b,c) = (l_?’) =5.

m—3

Consider D = Agzbe such that ¢(z, Ag, b, ¢) holds. We can make such
R-hypergraph D. We have |D| = 8, and

ne(D) > ne(Ap/bc) +ne(Ag/zbc) =10+ 5 > 12 = s.

Therefore, D € Hg 5 and there is a copy of D in Fg,.

We can assume that Agbc is a substructure of Fy ,.

Consider an indiscernible sequence {(b;, ¢;) }i<, over Ay from Claim A.
We have the following:

e ne(Ap/bi,c;) =0ifi < j<w.
o ne(Ag/b,c;) = (3) =10if j <i < w.

Suppose that there is an element d € M and there are integers ¢, 7 with
i < j<w, o(d, Ag, bi, c;), and ¢(d, Ay, b;, c;). Consider Dy = Aydb;c;. We
have |D;| = 8 while

ne(D;) = ne(Ap) + ne(Ao/d, b;, c;)
+ne(Ag/d, b;) + ne(Ao/d, c;) + ne(Ay /b, c;)
+ne(Ay/d) + ne(Ao/b;) + ne(Ao/c;)
=0+0+2+24+0+14+0+0=10< 12 =3s.

This contradicts with Dy € Hg 5. Therefore, ¢(z, Ao, b, ¢) divides over
Ap. This finishes a proof of Claim B.
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We turn to a proof of Claim C. Let {(b;,¢;)}ic, be an indiscernible
sequence over Ay with (bg, co) = (b, ¢). Suppose that ne(Agy/b;, ¢;) > s¢ for
all 1 # 7 with i,j € w.

Our aim is to prove that Y (z) = {¢(x, Ao, b;,¢;) : © < w} is consistent.

By strengthning the formula ¢, We can assume that o(x, Ay, b;, ¢;)
specifies all R-hyperedges and —R-hyperedges on Agxb;c;.

Put I = {b;}icw U {ci}icw and let U = Ag U I be a substructure of
M. Consider an extension Ux of R-structure U by adding R-hyperedges
specified in ¥(x). We add no more R-hyperedges to Uz other than those
specified in ¥(z). Note that there are no R-hyperedge Y on Uz such that
{z,d,d'} CY with d,d" € [ and d # d'.

We show that any D C Uz with |D| = 8 belongs to Hg,,. Then z can
be embedded to the monster model.

There are several cases to consider.

Case Ay C D. Since |D — Ay| = 3, one of the following holds in this
case.

1. D= AobiCjZIZ’.
3. D= A()CZ'C]'.I with 7 < j

Note that 2 and 3 are essentially the same case.

Suppose D = Agb;cjx. If i = j then p(x, A, b;, ¢;) holds in Uz. Hence,
ne(D) > 12 =s.

If © # j then ne(Ao/bi,c;) > so = 2 by the assumption. Also,
ne(Ao/bi. cj,z) = (7) = 5 by the definition of the structure Uz. Hence,

HG(D) > Ile(Ao/bi, Cj, LU) + l’le(A()/bZ', :c) + 1’16(140/01'7 1’) + Ile(Ao/bi, Cj)
+ ne(Ay/x)
>50+24+2+2+1=12=s.

Now, suppose D = Agb;bjx with ¢ # j.

First, we claim that ne(Ag/b;,b;) > so = 2 for any i < j. Note that
ne(Ao/b;.b;) = ne(Ap/bg,b1) by indiscernibility. So, otherwise, we have
ne(Ao/b;,b;) < 2 for any ¢ < j. Consider Dy = Apbobibe. We have



ne(Ap) =0, ne(Ay/b;) = 0 for any 7. Hence,

HG(D()) = HG(Ao/bo, bl, b2) + Ile(Ao/bo, bl> + ne(AO/bl, bg) + ne(Ao/bo, b2)
<5+24+24+2=11<12=s.

But since Dy C M, Dy should be a member of HJ. A contradiction.
Note that ne(Ay/b;, b;, ) = 5. So, we have

ne(D) > ne(Ay/b;, b, x) + ne(Ao/b;, z) + ne(Ay/b;, ) + ne(Ao/bi, b;)
+ne(Ay/z)
>H5+24+24+2+1=12=s.

Case Ag — D is non-empty. The proof is the same as the previous
one. I

Proof of Claims B, and C with m =4, [ =8, and s = 13. We have

(D=0 (-0 (-

and s =11=5+3-2+ 2.
Ap has exactly [ — 3 = 5 elements. The formula ¢(z, Ay, b, ¢) describes
the following:

e Ay is a complete R-hypergraph of size 5, i.e., ne(Aq) = 0.
e Agb is a complete R-hypergraph, i.e., ne(Aq/b) = 0.

e Aycis a complete R-hypergraph, i.e., ne(A4q/c) = 0.

e ne(Ap/x) =0.

o ne(Ag/b,c) = (') = 10.

m—2

(

(

o ne(A/z,b) = 3.

o ne(Ay/z,c) = 3.
(

o ne(Ag/z,b,c) = (%) =5.

m—3
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Consider D = Agzbe such that ¢(z, Ag, b, ¢) holds. We can make such
R-hypergraph D. We have |D| = 8, and

ne(D) > ne(Ag/bc) +ne(Ag/zbc) =10+ 5 > 13 = s.

Therefore, D € Hy 5 and there is a copy of D in Fg;.

We can assume that Agbc is a substructure of Fy ;.

Consider an indiscernible sequence {(b;, ¢;) }i<,, over Ag from Claim A.
We have the following:

° l’le(Ao/bi,Cj) =0if i < ] < w.
o ne(Ag/bi,c;)=(3) =10if j <i < w.

Suppose that there is an element d € M and there are integers 7, j with
i <j<uw, p(d, Ag, b, c;), and @(d, Ag, b;, c;). Consider Dy = Aydb;c;. We
have |D;| = 8 while

ne(D;) = ne(Ap) + ne(Ao/d, b;, c;)
+ne(Ap/d, b;) + ne(Aop/d, c;) +ne(Ao/bi, c;)
+ne(Ag/d) + ne(Ao/b;) + ne(Ao/c;)
=0+54+3+34+04+0+04+0=11<13=s.

This contradicts with D; € ”Hgl’l?). Therefore, p(x, Ay, b, ¢) divides over
Ap. This finishes a proof of Claim B.

We turn to a proof of Claim C. Let {(b;,¢;)}ic, be an indiscernible
sequence over Ay with (bg, co) = (b, ¢). Suppose that ne(Ag/b;, ¢;) > s¢ for
all © #£ j with 4,7 € w.

Our aim is to prove that (z) = {¢(z, Ao, b;,¢;) 1 i < w} is consistent.

By strengthning the formula ¢, We can assume that ¢(x, Ay, b;, ¢;)
specifies all R-hyperedges and —R-hyperedges on Agzb;c;.

Put I = {b;}i<o U{ci}ico, and let U = Ay U I be a substructure of
M. Consider an extension Uz of R-structure U by adding R-hyperedges
specified in ¥(x). We add no more R-hyperedges to Uz other than those
specified in 3 (z). Note that there are no R-hyperedge Y on Uz such that
{z,d,d'} CY withd,d € [ and d # d'.

We show that any D C Uz with |D| = 8 belongs to Hg ;3. Then 2 can
be embedded to the monster model.
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There are several cases to consider.
Case Ay C D. Since |D — Ag| = 3, One of the following holds in this

case.

1. D= AobiCj.T.

3. D= A()CZ'C]'.I with ¢ < j

Note that 2 and 3 are essentially the same case.

Suppose D = Agb;cjx. If i = j then p(x, Ao, b;, ¢;) holds in Uz. Hence,
ne(D) > 13 = s.

If © # 7 then ne(Ay/b;,c;) > sy = 2 by the assumption. Also,
ne(Ao/bi.c;,v) = (?) = 5 by the definition of the structure Uz. Hence,

HG(D) > Ile(Ao/bi, Cj, LU) + l’le(A()/bZ', IE) + l'le(Ao/Ci, CC) + Ile(Ao/bi, Cj)
>5+3+3+2=13=s.

Now, suppose D = Agb;bjx with ¢ # j.

First, we claim that ne(Ag/b;,b;) > so = 2 for any i < j. Note that
ne(Ao/b;.b;) = ne(Ag/by,b1) by indiscernibility. So, otherwise, we have
ne(Ao/b;,b;) < 2 for any ¢ < j. Consider Dy = Apbobibe. We have
ne(Ap) =0, ne(Ay/b;) = 0 for any i. Hence,

HG(D()) = l’le(A()/b(), bl, bg) + ne(Ao/b(), bl) + He(Ao/bl, bg) + He(Ao/bO) b2)
<5+4+3+3+2=13 =s.
But since Dy C M, Dy should be a member of H A contradiction.

Note that ne(Ay/b;, b;, ) = 5. So, we have

HG(D) > He(Ao/bi, bj, LE) + Ile(Ao/bi, ZU) + He(Ao/bj, LE) + ne(Ao/bi, bj)
~5+3+3+2=13=s.

Case Ag — D is non-empty. The proof is the same as the previous
one. ]
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