On dividing and forking in random structures

Hirotaka Kikyo Graduate School of System Informatics Kobe University

1 Introduction

This is an exposition of a joint work with Akito Tsuboi [4].

Let $m < l < \omega$, and let R be an m-ary relation symbol. By an R-hypergraph, we mean an R-structure where R is symmetric and irreflexive.

For a finite R-hypergraph X, we define e(X) and ne(X) as follows:

$$e(X) = |\{A \in [X]^m : X \models R(A)\}|,$$

 $ne(X) = |\{B \in [X]^m : X \models \neg R(B)\}|.$

Suppose X and Y are subsets of an R-hypergraph. We define e(X/Y) and ne(X/Y) as follows:

$$e(X/Y) = |\{A \in [X \cup Y]^m : Y \subset A, XY \models R(A)\}|,$$

 $ne(X/Y) = |\{B \in [X \cup Y]^m : Y \subset A, XY \models \neg R(B)\}|.$

We write $ne(X/y_1, ..., y_k)$ for $ne(X/\{y_1, ..., y_k\})$, when Y is explicitly given. We use $e(X/y_1, ..., y_k)$ similarly.

Let $A \in [X]^m$. We call A an R-hyperedge if $X \models R(A)$. We call A an $\neg R$ -hyperedge if $X \models \neg R(A)$.

Let s be another integer. Let $\mathcal{H}_{l,s}^m$ be the class defined by:

 $X \in \mathcal{H}^m_{l,s}$ if and only if whenever $A \subseteq X$ with |A| = l then $e(A) < {l \choose m} - s$.

Note that $X \in \mathcal{H}_{l,s}^m$ if and only if whenever $A \subseteq X$ with |A| = l then ne(A) > s.

Let K be an infinite class of finite R-structures. M is a random structure for K if

- (1) M is countable,
- (2) whenever $A \subset_{finite} M$ then $A \in \mathcal{K}$, and
- (3) whenever $A \subset_{finite} M$, $A \subset B \in \mathcal{K}$ and B is finite then there is an L-embedding $f: B \to M$ with f(x) = x for $x \in A$.

A random structure for \mathcal{K} is also known as a Fraïssé limit of \mathcal{K} and a generic structure for \mathcal{K} .

If K has HP, JEP, and AP then there is a random structure for K.

Let A, B, C and D be R-structures. We say that D is a free amalgam of B and C over A if $D = B \cup C$, $B \cap C = A$ as the sets of domains, and $R(D) = R(B) \cup R(C)$. We say that a class of finite R-structures K has the free amalgamation property (FAP in short) if whenever D is a free amalgam of B and C over A with $A, B, C \in K$ then $D \in K$.

Proposition 1 (K., Tsuboi[4]). We have the following:

- (1) $\mathcal{H}_{l,s}^m$ has the free amalgamation property if $s < \binom{l-2}{m-2}$.
- (2) The amalgamation property fails in $\mathcal{H}_{l,s}^m$ if $s \geq {l-2 \choose m-2}$.

Let $F_{l,s}^m$ be a random $\mathcal{H}_{l,s}^m$ hypergraph. $F_{l,0}^2$ are known as Henson graphs. Conant proved that forking and dividing are different concepts in the theory of Henson graph $F_{l,0}^2$. While Hrushovski proved that each theory of $F_{l,0}^m$ is a simple theory of SU-rank one if $m \geq 3$. Assuming $m \geq 3$, we found that the theory of $F_{l,s}^m$ is simple theory of SU-rank one if s is small, while dividing and forking are different concepts if s is large. The general proofs are technical. We will explain the idea of the proof with certain values of l, m, and s.

2 Main Theorem

Theorem 2 (K., Tsuboi [4]). Suppose $3 \le m < l$, and $s < {l-3 \choose m-3}$. Then $Th(F_{l,s}^m)$ is simple with SU-rank one.

Theorem 3 (K., Tsuboi [4]). Suppose $3 \le m < l$, and $\binom{l-3}{m-3} \le s < \binom{l-2}{m-3}$. Then dividing and forking are different concepts in $\text{Th}(F_{l,s}^m)$.

Sketch of proof of Theorem 3. We work in a monster elementary extension \mathcal{M} of $F_{l,s}^m$.

Assume $\binom{l-3}{m-3} \leq s < \binom{l-2}{m-2}$. Let $s = \binom{l-3}{m-3} + 3s_0 + r$ with r = 0, 1, or 2. With $|A_0| = l - 3$, let $\varphi(x, A_0, b, c)$ be a formula describing the following:

- $ne(A_0) = 0$ (A_0 is a complete R-hypergraph of size l-3),
- $\operatorname{ne}(A_0/b) = 0$, $\operatorname{ne}(A_0/c) = 0$ (A_0b and A_0c are complete R-hypergraphs of size l-2),
- $\operatorname{ne}(A_0/b, c) = \binom{l-3}{m-2}$ (no R-hyperedges containing b and c),
- $\operatorname{ne}(A_0/x, b, c) = \binom{l-3}{m-3}$ (no *R*-hyperedges containing *b*, *c*, and *x*),
- $\operatorname{ne}(A_0/x, b) = s_1 \ (s_1 = s_0 + 1 \text{ if } r = 2, \text{ otherwise } s_1 = s_0),$
- $ne(A_0/x, c) = s_1,$
- $\operatorname{ne}(A_0/x) = r_0 \ (r_0 = 1 \text{ if } r = 1, \text{ otherwise } r_0 = 0).$

Claim A. There is an indiscernible sequence $\{(b_i, c_i)\}_{i \in \omega}$ over A_0 with the following properties:

- 1. $A_0b_ic_i \cong A_0bc$ as R-structures.
- 2. $\operatorname{ne}(A_0/b_i, c_j) = 0$ if $i < j < \omega$ (Full of R-hyperedges).
- 3. $\operatorname{ne}(A_0/b_i, c_j) = \binom{l-3}{m-2}$ if $j \leq i < \omega$ (No R-hyperedges, or full of $\neg R$ -hyperedges).

Properties 1–3 above specifies R-hyperedges and $\neg R$ -hyperedges on $U = A_0 \cup \{b_i\}_{i<\omega} \cup \{c_i\}_{i<\omega}$. Assume further that U has no more R-hyperedges than those specified by 1–3. Choosing $D \subset U$ with |D| = l, we can show that $D \in \mathcal{H}_{l,s}^m$. Therefore, U can be embedded in the monster model \mathcal{M} . By the form of the properties 1–3, $\{(b_i, c_i)\}_{i<\omega}$ can be chosen to be an indiscernible sequence over A_0 .

Claim B. $\varphi(x, A_0, b, c)$ divides over A_0 .

Claim C. Let $\{(b_i, c_i)\}_{i \in \omega}$ be an indiscernible sequence over A_0 with $(b_0, c_0) = (b, c)$. Suppose that $\operatorname{ne}(A_0/b_i, c_j) > s_0$ for all $i \neq j$ with $i, j \in \omega$. Then the set $\{\varphi(x, A_0, b_i, c_i) : i \in \omega\}$ is consistent.

Claim D. Let $A^* = (A_0, b_1, b_2 \dots, b_{n^*})$ be a tuple with $(A_0, b_i, b_j) \cong (A_0, b, c)$ for $1 \leq i < j \leq n^*$, where n^* is a sufficiently large integer. Let $\psi(x, A^*)$ be the formula

$$\bigvee_{1 \le i < j \le n^*} \varphi(x, A_0, b_i, b_j).$$

Then $\psi(x, A^*)$ does not divide over A_0 .

Supporse $\psi(x, A^*)$ divides over A_0 .

Choose an indiscernible sequence $\{(b_{i,1},\ldots,b_{i,n^*})\}_{i\in\omega}$ over A_0 witnessing the dividing with $(b_{0,1},\ldots,b_{0,n^*})=(b_1,\ldots,b_{n^*})$.

Suppose $1 \le i < j \le n^*$. By indescernibility, we have the following:

- (a) $ne(A_0/b_{n,i}, b_{n',j}) \le s_0 \text{ for } n < n' < \omega, \text{ or } s_0 \le s_0$
- (b) $ne(A_0/b_{n,i}, b_{n',j}) > s_0 \text{ for } n < n' < \omega.$

Also,

- (c) $ne(A_0/b_{n,j}, b_{n',i}) \le s_0$ for $n < n' < \omega$, or
- (d) $ne(A_0/b_{n,j}, b_{n',i}) > s_0$ for $n < n' < \omega$.
- If (b) and (d) hold simultaneously, $\{\varphi(x, A_0, b_{n,i}, b_{n,j}) : n < \omega\}$ is consistent by Claim B. This implies $\{\psi(x, A_0, b_{n,1}, \dots, b_{n,n^*}) : n < \omega\}$ is consistent, contradicting our assumption.

At least one of the following is true if $1 \le i < j \le n^*$:

- (i) $ne(A_0/b_{n,i}, b_{n',j}) \le s_0 \text{ for } n < n' < \omega.$
- (ii) $ne(A_0/b_{n,j}, b_{n',i}) \le s_0 \text{ for } n < n' < \omega.$

Taking n^* sufficiently large, we can use Ramsey's Theorem to choose i, j, k satisfying $1 \le i, j, k \le n^*$,

 $ne(A_0/b_{0,i}, b_{1,j}) \le s_0,$

 $ne(A_0/b_{1,j}, b_{2,k}) \le s_0$, and

 $ne(A_0/b_{0,i}, b_{2,k}) \le s_0.$

But we have $\operatorname{ne}(A_0b_{0,i}b_{1,j}b_{2,k}) \leq s$. Since $A_0b_{0,i}b_{1,j}b_{2,k} \subset \mathcal{M}$, we have $A_0b_{0,i}b_{1,j}b_{2,k} \in \mathcal{H}^m_{l,s}$. This is a contradiction.

We describe more detailed proofs of Claims B and C for parameters $m=4,\ l=8,\ {\rm and}\ s=11,\ 12,\ 13.$

Proof of Claims B, and C with m = 4, l = 8, and s = 11. We have

$$\binom{l-3}{m-3} = \binom{5}{1} = 5, \quad \binom{l-2}{m-2} = \binom{6}{2} = 15, \quad \binom{l-3}{m-2} = \binom{5}{2} = 10,$$

and $s = 11 = 5 + 3 \cdot 2$. A_0 has exactly l - 3 = 5 elements. The formula $\varphi(x, A_0, b, c)$ describes the following:

- A_0 is a complete R-hypergraph of size 5, i.e., $ne(A_0) = 0$.
- A_0b is a complete R-hypergraph, i.e., $ne(A_0/b) = 0$.
- A_0c is a complete R-hypergraph, i.e., $ne(A_0/c) = 0$.
- A_0x is a complete R-hypergraph, i.e., $ne(A_0/x) = 0$.
- There are no R-hyperedges containing both b and c, i.e., the number of $\neg R$ -hyperedges containing both b and c is maximal. In other words, $\operatorname{ne}(A_0/b,c)=\binom{l-3}{m-2}=10$.
- $ne(A_0/x, b) = 2$.
- $ne(A_0/x, c) = 2$.
- There are no R-edges containing b, c, and x, i.e., the number of $\neg R$ -hyperedges containing x, b and c is maximal. In other words, $\operatorname{ne}(A_0/x, b, c) = \binom{l-3}{m-3} = 5$.

Consider $D = A_0 x b c$ such that $\varphi(x, A_0, b, c)$ holds. We can make such R-hypergraph D. We have |D| = 8, and

$$ne(D) \ge ne(A_0/bc) + ne(A_0/xbc) = 10 + 5 > 11 = s.$$

Therefore, $D \in \mathcal{H}^4_{8,11}$ and there is a copy of D in $F^4_{8,11}$.

We can assume that A_0bc is a substructure of $F_{8,11}^4$.

Consider an indiscernible sequence $\{(b_i, c_i)\}_{i < \omega}$ over A_0 from Claim A. We have the following:

- $ne(A_0/b_i, c_i) = 0 \text{ if } i < j < \omega.$
- $\operatorname{ne}(A_0/b_i, c_j) = \binom{5}{2} = 10 \text{ if } j \le i < \omega.$

Suppose that there is an element $d \in \mathcal{M}$ and there are integers i, j with $i < j < \omega, \varphi(d, A_0, b_i, c_i)$, and $\varphi(d, A_0, b_j, c_j)$. Consider $D_1 = A_0 db_i c_j$. We have $|D_1| = 8$ while

$$ne(D_1) = ne(A_0) + ne(A_0/d, b_i, c_j)$$

$$+ ne(A_0/d, b_i) + ne(A_0/d, c_j)ne(A_0/b_i, c_j)$$

$$+ ne(A_0/d) + ne(A_0/b_i) + ne(A_0/c_j)$$

$$= 0 + 5 + 2 + 2 + 0 + 0 + 0 + 0 = 9 < 11 = s.$$

This contradicts with $D_1 \in \mathcal{H}^4_{8,11}$. Therefore, $\varphi(x, A_0, b, c)$ divides over A_0 . This finishes a proof of Claim B.

We turn to a proof of Claim C. Let $\{(b_i, c_i)\}_{i \in \omega}$ be an indiscernible sequence over A_0 with $(b_0, c_0) = (b, c)$. Suppose that $\operatorname{ne}(A_0/b_i, c_j) > s_0$ for all $i \neq j$ with $i, j \in \omega$.

Our aim is to prove that $\Sigma(x) = \{\varphi(x, A_0, b_i, c_i) : i < \omega\}$ is consistent. By strengthning the formula φ , We can assume that $\varphi(x, A_0, b_i, c_i)$ specifies all R-hyperedges and $\neg R$ -hyperedges on $A_0xb_ic_i$.

Put $I = \{b_i\}_{i < \omega} \cup \{c_i\}_{i < \omega}$ and let $U = A_0 \cup I$ be a substructure of \mathcal{M} . Consider an extension Ux of R-structure U by adding R-hyperedges specified in $\Sigma(x)$. We add no more R-hyperedges to Ux other than those specified in $\Sigma(x)$. Note that there are no R-hyperedge Y on Ux such that $\{x, d, d'\} \subset Y$ with $d, d' \in I$ and $d \neq d'$.

We show that any $D \subset Ux$ with |D| = 8 belongs to $\mathcal{H}_{8,11}^4$. Then x can be embedded to the monster model.

There are several cases to consider.

Case $A_0 \subset D$. Since $|D - A_0| = 3$, one of the following holds in this case.

- 1. $D = A_0 b_i c_i x$.
- 2. $D = A_0 b_i b_j x$ with i < j.
- 3. $D = A_0 c_i c_j x$ with i < j.

Note that 2 and 3 are essentially the same case.

Suppose $D = A_0 b_i c_j x$. If i = j then $\varphi(x, A_0, b_i, c_i)$ holds in Ux. Hence, ne(D) > 11 = s.

If $i \neq j$ then $\operatorname{ne}(A_0/b_i, c_j) > s_0 = 2$ by the assumption. Also, $\operatorname{ne}(A_0/b_i, c_j, x) = \binom{5}{1} = 5$ by the definition of the structure Ux. Hence,

$$\operatorname{ne}(D) \ge \operatorname{ne}(A_0/b_i, c_j, x) + \operatorname{ne}(A_0/b_i, x) + \operatorname{ne}(A_0/c_i, x) + \operatorname{ne}(A_0/b_i, c_j)$$

> 5 + 2 + 2 + 2 = 11 = s.

Now, suppose $D = A_0 b_i b_j x$ with $i \neq j$.

First, we claim that $ne(A_0/b_i, b_j) > s_0 = 2$ for any i < j. Note that $ne(A_0/b_i, b_j) = ne(A_0/b_0, b_1)$ by indiscernibility. So, otherwise, we have $ne(A_0/b_i, b_j) \le 2$ for any i < j. Consider $D_0 = A_0b_0b_1b_2$. We have $ne(A_0) = 0$, $ne(A_0/b_i) = 0$ for any i. Hence,

$$ne(D_0) = ne(A_0/b_0, b_1, b_2) + ne(A_0/b_0, b_1) + ne(A_0/b_1, b_2) + ne(A_0/b_0, b_2)$$

$$\leq 5 + 2 + 2 + 2 = 11 = s.$$

But since $D_0 \subset \mathcal{M}$, D_0 should be a member of $\mathcal{H}_{l,s}^m$. A contradiction. Note that $\operatorname{ne}(A_0/b_i, b_j, x) = 5$. So, we have

$$\operatorname{ne}(D) \ge \operatorname{ne}(A_0/b_i, b_j, x) + \operatorname{ne}(A_0/b_i, x) + \operatorname{ne}(A_0/b_j, x) + \operatorname{ne}(A_0/b_i, b_j)$$

> 5 + 2 + 2 + 2 = 11 = s.

Case $A_0 - D$ is non-empty. Choose $a \in A_0 - D$. If $x \notin D$ then $D \subset \mathcal{M}$. Then $D \in \mathcal{H}^m_{l,s}$. So, we can assume that $x \in D$. Consider a map $\sigma: D \to \mathcal{M}$ such that $\sigma(x) = a$, and σ is an identity map on $D - \{x\}$. σ is clearly an injective map. We claim that σ is an R-homomorphism. That is, any R-hyperedge on D is mapped to an R-hyperedge on $\sigma(D)$. Let Y be an R-hyperedge on D. If $x \notin Y$, then $\sigma Y = Y$ and there is nothing to prove. If $x \in Y$, $Y = A_1 \cup \{x\}$ with $A_1 \subset A_0$ or $Y = A_2 \cup \{x, d\}$ with $A_2 \subset A_0$ and $d \in I$. In either cases, Y is mapped to an R-hyperedge in M. We have $e(D) \leq e(\sigma(D))$. Therefore, $e(\sigma(D)) \leq e(D)$. Since $\sigma(D) \subset M$, we have $e(D) \leq e(\sigma(D))$. Therefore, $e(D) \in R$ and hence $e(D) \in \mathcal{H}^m_{l,s}$.

Proof of Claims B, and C with m = 4, l = 8, and s = 12. We have

$$\binom{l-3}{m-3} = \binom{5}{1} = 5, \quad \binom{l-2}{m-2} = \binom{6}{2} = 15, \quad \binom{l-3}{m-2} = \binom{5}{2} = 10,$$

and $s = 11 = 5 + 3 \cdot 2 + 1$.

 A_0 has exactly l-3=5 elements. The formula $\varphi(x,A_0,b,c)$ describes the following:

- A_0 is a complete R-hypergraph of size 5, i.e., $ne(A_0) = 0$.
- A_0b is a complete R-hypergraph, i.e., $ne(A_0/b) = 0$.
- A_0c is a complete R-hypergraph, i.e., $ne(A_0/c) = 0$.
- $ne(A_0/x) = 1$.
- $\operatorname{ne}(A_0/b, c) = \binom{l-3}{m-2} = 10.$
- $ne(A_0/x, b) = 2.$
- $ne(A_0/x, c) = 2$.
- $\operatorname{ne}(A_0/x, b, c) = \binom{l-3}{m-3} = 5.$

Consider $D = A_0 x b c$ such that $\varphi(x, A_0, b, c)$ holds. We can make such R-hypergraph D. We have |D| = 8, and

$$ne(D) \ge ne(A_0/bc) + ne(A_0/xbc) = 10 + 5 > 12 = s.$$

Therefore, $D \in \mathcal{H}^4_{8,12}$ and there is a copy of D in $F^4_{8,12}$.

We can assume that A_0bc is a substructure of $F_{8,12}^4$.

Consider an indiscernible sequence $\{(b_i, c_i)\}_{i < \omega}$ over A_0 from Claim A. We have the following:

- $ne(A_0/b_i, c_j) = 0 \text{ if } i < j < \omega.$
- $\operatorname{ne}(A_0/b_i, c_j) = {5 \choose 2} = 10 \text{ if } j \le i < \omega.$

Suppose that there is an element $d \in \mathcal{M}$ and there are integers i, j with $i < j < \omega, \varphi(d, A_0, b_i, c_i)$, and $\varphi(d, A_0, b_j, c_j)$. Consider $D_1 = A_0 db_i c_j$. We have $|D_1| = 8$ while

$$ne(D_1) = ne(A_0) + ne(A_0/d, b_i, c_j)$$

$$+ ne(A_0/d, b_i) + ne(A_0/d, c_j) + ne(A_0/b_i, c_j)$$

$$+ ne(A_0/d) + ne(A_0/b_i) + ne(A_0/c_j)$$

$$= 0 + 5 + 2 + 2 + 0 + 1 + 0 + 0 = 10 < 12 = s.$$

This contradicts with $D_1 \in \mathcal{H}^4_{8,12}$. Therefore, $\varphi(x, A_0, b, c)$ divides over A_0 . This finishes a proof of Claim B.

We turn to a proof of Claim C. Let $\{(b_i, c_i)\}_{i \in \omega}$ be an indiscernible sequence over A_0 with $(b_0, c_0) = (b, c)$. Suppose that $\operatorname{ne}(A_0/b_i, c_j) > s_0$ for all $i \neq j$ with $i, j \in \omega$.

Our aim is to prove that $\Sigma(x) = \{\varphi(x, A_0, b_i, c_i) : i < \omega\}$ is consistent. By strengthning the formula φ , We can assume that $\varphi(x, A_0, b_i, c_i)$ specifies all R-hyperedges and $\neg R$ -hyperedges on $A_0xb_ic_i$.

Put $I = \{b_i\}_{i < \omega} \cup \{c_i\}_{i < \omega}$ and let $U = A_0 \cup I$ be a substructure of \mathcal{M} . Consider an extension Ux of R-structure U by adding R-hyperedges specified in $\Sigma(x)$. We add no more R-hyperedges to Ux other than those specified in $\Sigma(x)$. Note that there are no R-hyperedge Y on Ux such that $\{x, d, d'\} \subset Y$ with $d, d' \in I$ and $d \neq d'$.

We show that any $D \subset Ux$ with |D| = 8 belongs to $\mathcal{H}_{8,12}^4$. Then x can be embedded to the monster model.

There are several cases to consider.

Case $A_0 \subset D$. Since $|D - A_0| = 3$, one of the following holds in this case.

- 1. $D = A_0 b_i c_j x$.
- 2. $D = A_0 b_i b_j x$ with i < j.
- 3. $D = A_0 c_i c_i x$ with i < j.

Note that 2 and 3 are essentially the same case.

Suppose $D = A_0 b_i c_j x$. If i = j then $\varphi(x, A_0, b_i, c_i)$ holds in Ux. Hence, ne(D) > 12 = s.

If $i \neq j$ then $\operatorname{ne}(A_0/b_i, c_j) > s_0 = 2$ by the assumption. Also, $\operatorname{ne}(A_0/b_i, c_j, x) = \binom{5}{1} = 5$ by the definition of the structure Ux. Hence,

$$ne(D) \ge ne(A_0/b_i, c_j, x) + ne(A_0/b_i, x) + ne(A_0/c_i, x) + ne(A_0/b_i, c_j) + ne(A_0/x)$$

$$> 5 + 2 + 2 + 2 + 1 = 12 = s.$$

Now, suppose $D = A_0 b_i b_j x$ with $i \neq j$.

First, we claim that $ne(A_0/b_i, b_j) > s_0 = 2$ for any i < j. Note that $ne(A_0/b_i, b_j) = ne(A_0/b_0, b_1)$ by indiscernibility. So, otherwise, we have $ne(A_0/b_i, b_j) \le 2$ for any i < j. Consider $D_0 = A_0b_0b_1b_2$. We have

 $ne(A_0) = 0$, $ne(A_0/b_i) = 0$ for any i. Hence,

$$ne(D_0) = ne(A_0/b_0, b_1, b_2) + ne(A_0/b_0, b_1) + ne(A_0/b_1, b_2) + ne(A_0/b_0, b_2)$$

$$\leq 5 + 2 + 2 + 2 = 11 < 12 = s.$$

But since $D_0 \subset \mathcal{M}$, D_0 should be a member of $\mathcal{H}_{l,s}^m$. A contradiction. Note that $\operatorname{ne}(A_0/b_i, b_j, x) = 5$. So, we have

$$ne(D) \ge ne(A_0/b_i, b_j, x) + ne(A_0/b_i, x) + ne(A_0/b_j, x) + ne(A_0/b_i, b_j) + ne(A_0/x)$$

$$> 5 + 2 + 2 + 2 + 1 = 12 = s.$$

Case $A_0 - D$ is non-empty. The proof is the same as the previous one.

Proof of Claims B, and C with m = 4, l = 8, and s = 13. We have

$$\binom{l-3}{m-3} = \binom{5}{1} = 5, \quad \binom{l-2}{m-2} = \binom{6}{2} = 15, \quad \binom{l-3}{m-2} = \binom{5}{2} = 10,$$

and $s = 11 = 5 + 3 \cdot 2 + 2$.

 A_0 has exactly l-3=5 elements. The formula $\varphi(x,A_0,b,c)$ describes the following:

- A_0 is a complete R-hypergraph of size 5, i.e., $ne(A_0) = 0$.
- A_0b is a complete R-hypergraph, i.e., $ne(A_0/b) = 0$.
- A_0c is a complete R-hypergraph, i.e., $ne(A_0/c) = 0$.
- $\operatorname{ne}(A_0/x) = 0.$
- $\operatorname{ne}(A_0/b, c) = \binom{l-3}{m-2} = 10.$
- $ne(A_0/x, b) = 3.$
- $ne(A_0/x, c) = 3$.
- $\operatorname{ne}(A_0/x, b, c) = \binom{l-3}{m-3} = 5.$

Consider $D = A_0 x b c$ such that $\varphi(x, A_0, b, c)$ holds. We can make such R-hypergraph D. We have |D| = 8, and

$$ne(D) \ge ne(A_0/bc) + ne(A_0/xbc) = 10 + 5 > 13 = s.$$

Therefore, $D \in \mathcal{H}^4_{8,13}$ and there is a copy of D in $F^4_{8,13}$.

We can assume that A_0bc is a substructure of $F_{8,13}^4$.

Consider an indiscernible sequence $\{(b_i, c_i)\}_{i < \omega}$ over A_0 from Claim A. We have the following:

- $ne(A_0/b_i, c_j) = 0 \text{ if } i < j < \omega.$
- $\operatorname{ne}(A_0/b_i, c_j) = {5 \choose 2} = 10 \text{ if } j \le i < \omega.$

Suppose that there is an element $d \in \mathcal{M}$ and there are integers i, j with $i < j < \omega, \varphi(d, A_0, b_i, c_i)$, and $\varphi(d, A_0, b_j, c_j)$. Consider $D_1 = A_0 db_i c_j$. We have $|D_1| = 8$ while

$$ne(D_1) = ne(A_0) + ne(A_0/d, b_i, c_j)$$

$$+ ne(A_0/d, b_i) + ne(A_0/d, c_j) + ne(A_0/b_i, c_j)$$

$$+ ne(A_0/d) + ne(A_0/b_i) + ne(A_0/c_j)$$

$$= 0 + 5 + 3 + 3 + 0 + 0 + 0 + 0 = 11 < 13 = s.$$

This contradicts with $D_1 \in \mathcal{H}^4_{8,13}$. Therefore, $\varphi(x, A_0, b, c)$ divides over A_0 . This finishes a proof of Claim B.

We turn to a proof of Claim C. Let $\{(b_i, c_i)\}_{i \in \omega}$ be an indiscernible sequence over A_0 with $(b_0, c_0) = (b, c)$. Suppose that $\operatorname{ne}(A_0/b_i, c_j) > s_0$ for all $i \neq j$ with $i, j \in \omega$.

Our aim is to prove that $\Sigma(x) = \{\varphi(x, A_0, b_i, c_i) : i < \omega\}$ is consistent. By strengthning the formula φ , We can assume that $\varphi(x, A_0, b_i, c_i)$ specifies all R-hyperedges and $\neg R$ -hyperedges on $A_0xb_ic_i$.

Put $I = \{b_i\}_{i < \omega} \cup \{c_i\}_{i < \omega}$ and let $U = A_0 \cup I$ be a substructure of \mathcal{M} . Consider an extension Ux of R-structure U by adding R-hyperedges specified in $\Sigma(x)$. We add no more R-hyperedges to Ux other than those specified in $\Sigma(x)$. Note that there are no R-hyperedge Y on Ux such that $\{x, d, d'\} \subset Y$ with $d, d' \in I$ and $d \neq d'$.

We show that any $D \subset Ux$ with |D| = 8 belongs to $\mathcal{H}_{8,13}^4$. Then x can be embedded to the monster model.

There are several cases to consider.

Case $A_0 \subset D$. Since $|D - A_0| = 3$, One of the following holds in this case.

- 1. $D = A_0 b_i c_j x$.
- 2. $D = A_0 b_i b_j x$ with i < j.
- 3. $D = A_0 c_i c_j x$ with i < j.

Note that 2 and 3 are essentially the same case.

Suppose $D = A_0 b_i c_j x$. If i = j then $\varphi(x, A_0, b_i, c_i)$ holds in Ux. Hence, ne(D) > 13 = s.

If $i \neq j$ then $\operatorname{ne}(A_0/b_i, c_j) > s_0 = 2$ by the assumption. Also, $\operatorname{ne}(A_0/b_i, c_j, x) = \binom{5}{1} = 5$ by the definition of the structure Ux. Hence,

$$\operatorname{ne}(D) \ge \operatorname{ne}(A_0/b_i, c_j, x) + \operatorname{ne}(A_0/b_i, x) + \operatorname{ne}(A_0/c_i, x) + \operatorname{ne}(A_0/b_i, c_j)$$

> 5 + 3 + 3 + 2 = 13 = s.

Now, suppose $D = A_0 b_i b_j x$ with $i \neq j$.

First, we claim that $ne(A_0/b_i, b_j) > s_0 = 2$ for any i < j. Note that $ne(A_0/b_i, b_j) = ne(A_0/b_0, b_1)$ by indiscernibility. So, otherwise, we have $ne(A_0/b_i, b_j) \le 2$ for any i < j. Consider $D_0 = A_0b_0b_1b_2$. We have $ne(A_0) = 0$, $ne(A_0/b_i) = 0$ for any i. Hence,

$$ne(D_0) = ne(A_0/b_0, b_1, b_2) + ne(A_0/b_0, b_1) + ne(A_0/b_1, b_2) + ne(A_0/b_0, b_2)$$

$$\leq 5 + 3 + 3 + 2 = 13 = s.$$

But since $D_0 \subset \mathcal{M}$, D_0 should be a member of $\mathcal{H}_{l,s}^m$. A contradiction.

Note that $ne(A_0/b_i, b_j, x) = 5$. So, we have

$$\operatorname{ne}(D) \ge \operatorname{ne}(A_0/b_i, b_j, x) + \operatorname{ne}(A_0/b_i, x) + \operatorname{ne}(A_0/b_j, x) + \operatorname{ne}(A_0/b_i, b_j)$$

> 5 + 3 + 3 + 2 = 13 = s.

Case $A_0 - D$ is non-empty. The proof is the same as the previous one.

Acknowledgments

The work is supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- [1] J. B. Conant. Forking and dividing in Henson graphs. *Notre Dame Journal of Formal Logic*, 57(3):375–387, 2016.
- [2] J. B. Conant. An axiomatic approach to free amalgamation. *Journal of Symbolic Logic*, 82(2):648–671, 2017.
- [3] E. Hrushovski. *Pseudo-finite fields and related structures*. Model Theory and Applications, Quaderni di Matematica, vol. 11. Aracne, Rome, 2002.
- [4] H. Kikyo, A. Tsuboi, Dividing and forking in random hypergraphs, Annals of Pure and Applied Logic Volume 176, Issue 2 (2025). https://doi.org/10.1016/j.apal.2024.103521

Graduate School of System Informatics Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 JAPAN kikyo@kobe-u.ac.jp

神戸大学大学院システム情報学研究科 桔梗 宏孝