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1. INTRODUCTION

We start with the definition of random rotation on the one-dimensional torus T = T! =
R/Z. Given a measure-preserving transformation 7 and a T-valued random variable o on

a probability space (€, F, P), consider a T-valued stationary sequence {a, },>o defined by
an =ao7” (n>0). Ourrandom rotation is a family of maps X = {X,, },,>0 determined
by the following rule:

Xo(w)r=2€T

Xot1(w)r = Xp(w)z + a(w) (n>0),

where ‘4’ denotes the usual addition on T. X will be called the random rotation with
dice variable o and noise system 7. As mentioned later, random walks on T are thought

of as random rotations with {«,} independent and identically distributed.

It is a classical fact that ergodic properties of a random walk X as a Markov chain with
respect to the normalized Haar measure m are classified in terms of transition probability
v. To be concrete, (1) X is not ergodic if and only if there exists a positive integer N such
that v{(0), (1/N), ..., (N—=1)/N)} =1, (2) X is ergodic but not mixing if and only if
there exist a positive integer N and an irrational ¢ such that v{(0), (6 +1/N), ..., (6 +
(N—1)/N)} =1, and (3) X is mixing in the other cases, where for a € R, (a) denotes
the coset in T = R/Z containing a.

Further we note that if the transition probability v is discrete, the random walk X
can be realized as a random rotation such that (2, F, P) is the usual Lebesgue space
with = [0, 1) and the noise system 7 is an expanding piecewise linear map mixing with
respect to the Lebesgue measure P. In addition, we have to note that an expanding
piecewise linear map is a typical example of the so called Lasota-Yorke map (abbrev. L-Y
map hereafter).

Based on the above observation, first we consider an analogous classification problem
for ergodic properties of the random rotations having a mixing L-Y map as its noise
system in Section 6. The result is a sort of annealed one since it is stated in terms of the
skew product transformation on the product space (T, B(T), m) x (2, F, P) defined by

Ty(z,w) = (Xi(w)z, TW) (z,w) € T x Q.
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By identifying the unit interval with the one-dimensional torus, Ty can be regarded as
the skew product transformation on T?. We note that Siboni [5] studied the criterion of
ergodicity of Ty in the cases when 7 is a S-transformation with integral § > 2. In Section
7 we also discuss about some sample-wise ergodic properties and show that any random
rotation cannot be quenched ‘weak-mixing’ by using the product random rotation.

2. RANDOM WALKS ON THE ONE-DIMENSIONAL TORUS

In this section we recall the classification result on ergodic properties of random walks
on T. Let v be a Borel probability measure on T. Consider the product probability space
(2, F, P) =11,50(T, B(T),v), the shift transformation 7 : € — Q defined by (Tw), = w,
(n > 0) for w = (Wy)n>0 € 2, and the coordinate function a : Q@ — T; a(w) = wy. Then
the random rotation X = {X,, },,>0 given by dice variable o and noise system 7 is nothing
but the random walk on T with transition probability v. Since any rotation preserves the
normalized Haar measure m, m is a stationary measure for the random walk X.

Recall the ergodic properties of a Markov chain X with respect to its stable distribu-

tion m. Define the Markov operator M of X by M f(x / f(X x) dP for a Borel

measurable function f on T. The random walk & is said to be ergodic with respect to

m if for any f € L'(m), lim — ZM’“ /f dm m-a.e. X is said to be mixing with

n—o0 N,

respect to m if for any f, g € L*(m hm /M”f x)dm = /fdm/gdm

Since the skew product transformation Ty : T x Q@ — T x Q; (z,w) — (X;(w)z, Tw)
preserves the product measure m x P, the corresponding ergodic propertles of the system
(T, m x P) are defined as usual (see [6]). The following result holds for any Markov chain
with stable distribution as well as random walks on T (see Theorem 4.1 in [3] (cf.[2])).

PROPOSITION 2.1. For a random walk X we have the following.
(1) X is ergodic with respect to m if and only if (Tx,m x P) is ergodic.
(2) X is mizing with respect to m if and only if (T, m X P) is mixing.

The following classification is a consequence of Theorem 4.2 in [3].

THEOREM 2.2. (1) (Tx,m x P) is not ergodic if and only if there exists a positive integer
N such that v({(0), (1/N), ..., (N —=1)/N)}) = 1.
(2) (Tx,m x P) is ergodic but not weak-mixing if and only if there exist a positive
integer N and an irrational 0 such that v({(6), (0 + 1/N), ..., (0 + (N —1)/N)}) = 1.
(3) (Tx,m X P) is weak-mizing if and only if it is exact.



3. RANDOM WALKS AS RANDOM ROTATIONS WITH MIXING L-Y NOISE

In this section we show that a random walk on T with discrete transition probability v
can be realized as a random rotation with noise system given by mixing piecewise linear
expanding map of the unit interval.

For I = Nor I ={1,2,---r}, let {a;};,c;r be a set of distinct elements in T and let
{pi}icr be a family of positive numbers such that Zpi =1 with p;, = v({a;}) (i € I).

iel
Choose the unit interval [0,1) as the sample space ) for our noise system. Define the
map 7 : 2 — Q by

1 k—1 k—1 k
Tw:p—<w—2pi> <w€[2pi,2pi),k‘el>.
k i=1 i=1

i=1

The graph of such a map is given as follows.

k—1
0 P1 p1+ P2 Z Di Zpi
i=1

Clearly 7 preserves the Lebesgue measure P on §2 = [0,1). Next we define o : Q — T
by

a(w) = ay (we {gpi,gpi)keg.

Then it is easy to see that T-valued stationary sequence {c,, = ao7™},>¢ is independent
and identically v-distributed. Therefore the random rotation given by the dice variable
a and the noise system 7 becomes the random walk on T with the transition probability
v. The piecewise linear expanding map 7 is obviously an L-Y map satisfying the mixing
condition (M) in [4].Thus our next aim is to examine whether an analogous result is valid
for random rotations with mixing L-Y noise system.



4. MI1xXING L-Y MAPS AND THEIR PERRON-FROBENIUS OPERATORS

In this section we summarize basic results on L-Y maps and their Perron-Frobenius
operators following [4]. In what follows (2, F, P) be the usual Lebesgue space i.e. 2 =
[0,1) and P is the completed Lebesgue measure. P-almost everywhere defined map 7 :
Q — Qs called an L-Y map if it satisfies the following conditions.

There exist a family P of closed intervals with nonempty interior and a family 7 =
{7} jep of maps such that

1) It J, K € P (J # K), then intJ NintK = ().
,2) P(Q\Uyepd) =0.

,1) For J € P, 7y : J— 7;J is C*-diffeomorphism.
,2) For J € P, Tlints = 7lints-

T,3) Except for a finite number of J € P, 7,J = [0,1].
E)(expanding) There exists n € N, ess.inf|(7")| > 1.

(P
(P
(T
(T
(
(

7_//

(7_/)2
In the above ‘ess.inf’ and ‘ess.sup’ mean the essential infimum and the essential supre-
mum with respect to the Lebesgue measure P.

(R)(Rényi condition (bounded distortion)) ess.sup < 00

An L-Y map 7 is called a mixing L-Y map if it satisfies the following condition .

(M) 7 has a fully-supported P-absolutely continuous invariant probability measure
such that the system (7, () is mixing.

The next remark tells us that the mixing condition (M) is not so restrictive for L-Y
maps.

REMARK 4.1. As above let P denote the Lebesgue measure on € = [0,1). Any L-Y
map we can show that there exists a finite number (say r) of P-absolutely continuous
invariant probability measures @1, ..., @), with density of bounded variation such that
the following hold

(1) Any P-absolutely continuous complex-valued 7-invariant measure can be expressed
as a linear combination of ();’s.

(2) For each i (1 < i <r), the system (7,Q);) is ergodic.

(3) For each i (1 < i < r), there exist a positive integer IV; and a disjoint family of
measurable sets L;; (0 < j < N; — 1) satisfying 7L;; = L;;11 (mod N;) and the system

(e, N;iQilL,,) is exact.

In the below we briefly review about Perron-Frobenius operators. Given a nonsingular
transformation 7" on a probability space (M, M, i), the Perron-Frobenius operator (ab-
brev. P-F operator) L7, : L'(u) — L'(u) for T with respect to u is determined by the



following identity:.

[ rCragyin= [ (foTigdn (7€ 170 and g € L),
M M
The following is an easy consequence of this characterization.

PROPOSITION 4.2. (1) For h € L*(p), hu is a T-invariant complez-valued measure if
and only if Ly.,h = h in L' ().

(2) Let v = hm be a p-absolutely continuous T-invariant probability measure, ¢ an
St-valued measurable function on M, and g € L*(v). Then the following are equivalent.

(i) Lrulegh) = gh in L'(n).

(i) Lru(pg) =g in L'(v).

(iii) goT = g in L*(v).

For a real-valued measurable function v and ¢t € R, we consider a perturbed P-F
operator Ly, g, : L'(n) = L'(p) defined by

Ly yy=ing = Lru(e"Mg) (g€ L'(n).

For n € N, it is easy to see that

/M E;u’mtug dp = /M exp (v—ltSnu) gdj.

Therefore the family {5;% Jotd L E R} has all information of distribution of the sum
n—1
Spt = Z u o T with respect to the p-absolutely continuous measure with density g.
=0
Now we go back to the review of results on mixing L-Y maps. Let BV denote the
subspace of L'(P) consisting of all elements with version of bounded variation. BV turns
out to be a Banach algebra endowed with the norm defined by

lellsy =\ @+ lllwr (v €BV),

where \/ ¢ is the infimum of the total variations \/ ¢ taken over all the versions of ¢ of
. We summarize some of results in Lemma 2.1 ~ Lemma 2.3 in [4] as the following
proposition.

PROPOSITION 4.3. Let () be the unique P-absolutely continuous invariant probability mea-
sure for a mizing L-Y map 7. For a real-valued element o in BV and t € R, define the

operator U —, : LY(Q) — LY(Q) by. U, = eV (p € LY(Q)). Then we have:
(1) For A e S, Xis an eigenvalue of L./, = L, o /110 * L'(Q) = L'(Q) if and only
if x= X" is an eigenvalue of U /=,.



(2) If h is an eigenvector of U —, on L'(Q) corresponding to an eigenvalue X with
modulus 1, |h| is a constant Q-a.e.

(3) For A e S', h e L'(Q) is an eigenvector of L j—y, corresponding to X if and only
if hhy is an eigenvector of L /5, = L. p /1 on L'(P) corresponding to X, where hy
denotes the density of (Q with respect to P.

(4) If X e S' is an eigenvalue of U =, then it is simple.

(5) U = has at most one eigenvalue of modulus 1.

(6) L = is a bounded linear operator on BV as well as a bounded linear operator on
LY(P).

(7) If L/, on L'(P) does not have an eigenvalue of modulus 1, then L /5, on BV
has the spectral radius less than 1.

(8) If L =1, on L*(P) has an eigenvalue of modulus 1, say A\(v/—1t), then L =, has

the following spectral decomposition as an operator on BV
Ne=The AV=1)"E /=, + R, (n>1) (%)

satisfying:
(8-i) E = is the projection onto the one-dimensional eigenspace corresponding to

AV —1t) given by
B = [ ghap [ Thodp (g€ 1'(P)),
Q 0

where h is any eigenvector of L ,—, corresponding A(v/—1t) with modulus 1.
(8-ii) R /=g, is the bounded operator on BV with spectral radius less than 1 such that

E Ry = Ry=Ly=1; = Opv.
(8iii) The spectral decomposition (x) is valid on L'(P) and IR —,9l1,p — 0 (n — o0)
for any g € L'(P).

5. CLASSIFICATION OF FUNCTIONS OF BOUNDED VARIATION WITH RESPECT TO A
MIXING L-Y MAP

In this section we recall the classification theorem in [4] on functions of bounded vari-
ation based on the spectral property of the Perron-Frobenius operator for an L-Y map
with mixing condition (M). For a real-valued o« € BV, define the following.

Ala) = {t € R : L /7, has an eigenvalue with modulus 1},
G(a) ={A € S : A= \(V/—1t) for some t € A(a)},
H(ar) = {(h) : h € Ho(a)},



where
Ho(a) = {h € L'(Q) : his S'-valued eigenvector of U, =z, for some t € A(a)}.
By virtue of Proposition 4.3, we can easily verify the following.

PROPOSITION 5.1. (1) A(a) is a subgroup of R with the usual addition.

(2) G(«) is a subgroup of S* with the usual multiplication.
(3) H(w) is a group with multiplication (hy)(he) = (hihs) for hy, hy € Hy(a).

We are in a position to state the classification theorem in [4].

THEOREM b5.2. Let 7 be a mizing L-Y map on Q2 = [0,1) and Q T-invariant probability

measure absolutely continuous with respect to the Lebesque measure P. Consider the
subspace BVy of BV defined by

BVy ={f € BV : [ is real-valued and / fdQ = 0}.
Q

Put

0= afa) = inf{t >0 :teAla)} if A(a) \ {0} £ 0
boc i Alo) {0} = 0.

Then BVy can be expressed as a disjoint union of the subsets B; (0 < j < 5) having the
following characterization.

(1) By={a € BV, : Ale) =R} and o € By if and only if there exists a 5 € L*(Q)
such that o = o7 — . In particular, a € By yields a =0 and G(a) = {1}.

(2) Bi={a€e BV, : ANa)=Z, Gla) = Z/pZ, H(a) = Z/qZ for some p, q € N} and
a € By if and only if there exist b > 0 and an integer-valued function K € BVy such that
ba =27 K. In particular, o« € By yields a > 0, A(a) = aZ, and b = apq.

(3) By ={a € BV : ANa) =2 Z,Gla) = Z/pZ, H(o) = Z for some p € N} and
a € By if and only if there exist b > 0, an integer-valued function K € BV \ By, and a
real-valued bounded function g such that ng can not be an integer-valued for anyn € Z\{0}
and ba =2m(goT — g+ K). In particular, o € By yields a > 0, A(«) = aZ, and b = ap.

(4) B3 = {a € BV : Aa) 2 Z,Gla) =2 Z, Hla) = Z/qZ for some q € N} and
a € By if and only if there exist b > 0, 6 € (0,1) N Q°, and an integer-valued function K
with K + 60 € BVy \ By such that boo = 2rn(K + 0). In particular, « € Bs yields a > 0,
Ao) = aZ, and b = aq.

(5) By ={a € BV, : AMa) 2 Z,G(a) = Z, Ha) =2 Z} and o € By if and only
if there exist b > 0, 0 € (0,1) N Q°, an integer-valued function K with K + 60 € BVj,
and a real-valued bounded function g such that ng can not be an integer-valued for any
n € Z\{0} and ba: = 2n(goT — g+ K +86). In particular, o € By yields a > 0, A(a) = aZ,
and b = a.

(6) Bs ={a e BV : Ala) = {0}, G(a) = {1}, H(a) = {1}}.
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Sketch of Proof. First we consider the decomposition BVy = By U (BVy \ By), where By
is the totality of element « with vanishing limit variance. o € By if and only if a = 0.
Indeed, by the well known result on the central limit theorem for dynamical system,
there exists 8 € L*(Q) such that o = B o1 — 3. eV 17T — V=TtheVTle for g]] ¢ € R.
Consequently, we have A(«a) = R.

For o with a = 0o, we can easily see that A(a) = {0}, G(«) = {1}, and H(«) = {1}.

It remains to classify the case when 0 < a < co. Clearly, we have A(a) = aZ = Z.

B corresponds to the case when hot = XeV~1%], for some h € L*(Q) with h? = 1 and
A € S' with \? = 1. Therefore eV 1% = 1. Thus K = apqa /27 is Z-valued.

B, corresponds to the case when h o7 = XeV 1%} for some h € L'(Q) with h" # 1
for any n € N and A € S' with A\ a pth root of 1. Put g = arg(h?)/(27) and K =
apa/(2m) — (go T — g). K is a Z-valued bounded function. Moreover, since hhy € BV, g

has a version such that it has at most countably many points of discontinuity and of the
first kind. Thus K € BV.
Bs corresponds to the case when h o1 = XeV~19h for some h € L'(Q) with k¢ =1 for

some g € N and A € S! with A not root of 1. We have eV~1%¢ = \9. Put § = arg(\?)/(2r)
and K = aqa/(2m) — 6. Then we have K is Z-valued and BV. Obviously 6 € (0,1) is
irrational.

By corresponds to the case when ko7 = XeV~1%], for some h € LY(Q) with h" # 1 for
any n € N and A € S' with X not root of 1. Put g = (arg(h))/(2r) and 6 = arg(\)/(2).
Then aav = 2n(go7T — g+ K +6). Clearly g is bounded function such that ng is not
Z-valued for any n € Z\ {0} and 6 € (0,1) is irrational. In the same manner as above,
we see that K is an element in BV. U

6. CLASSIFICATION OF RANDOM ROTATIONS WITH MIXING L-Y NOISE

In this section we show the following.

THEOREM 6.1. Consider a mizing L-Y map 7 and o« € BVy. Let Q be a unique P-
absolutely continuous invariant probability measure for 7. Then for the skew product
transformation Tx associated to the random rotation X with dice variable o and noise
system T, the following hold:

(1) (Tx,mxQ) is not ergodic if and only if there exist N € N, a real-valued measurable
function B, and Z-valued function K such that « = o1 — 3+ (1/N)K.

(2) (Tx,m x Q) is ergodic but not weak-mizing if and only if there exist N € N,
0 irrational, a real-valued measurable function B, and Z-valued function K such that
a=for—-pB+0+(1/N)K.

(3) (Tx,m x Q) is weak-mizing if and only if it is exact.
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Proof. Both assertions (1) and (2) are essentially proved in Anzai [1]. So we just prove
(2) assuming the assertion (1) is valid. We may identify T with the unit interval for

notational convenience.
First suppose that there exist N € N, 6 irrational, a real-valued measurable function

B, and Z-valued function K such that « = fo7 — 460+ (1/N)K. Since 0 is irrational,
(1) yields (T, m x Q) is ergodic. Next, define a function @ by @(z,w) = eV~ 2N E=Hw)
for (z,w) € T x Q. Then &(Tw(z,w)) = eV~ 2rNEta@)=5w) — vV=12aN(z+0-F(w) —
eV —12mN '®(x,w). Therefore the induced operator Ur, has an eigenvalue eV —12mN0 # 1.
Thus (Tx, m X Q) is not weak-mixing.

Conversely, if (T, m x Q) is ergodic but not weak-mixing. There exist & € L?(m X Q)
and A € S'\ {1} such that ¢(z + a(w),7w) = AP(z,w) (m x P)-a.e.(z,w). By the
ergodicity we may assume that |@(zx,w)| =1 (m x P)-a.e.(r,w). i.e. We can find I € F
with Q(I') = 1 such that w € I yields |?(z,w)| = 1 m-a.c.x.

For n € Z and w € I, we define &, (w) by

D, (w) = /@(x,w)e_m%m dx
T
For P-a.e.w, we have

@n(Tw)GJTIana(w) _ / @(1,7 Tw)e—ﬁ2wn(x—a(w)) m(d$)
T
- / Bz + a(w), 7w)Ae V2™ m(dx) (. rotation invariance of m)
T
:)\/(P(x,w)e_ﬁz’m‘” dz = A\, (w)
T

holds. Since (7,Q) is ergodic and P and Q are equivalent, |®,(w)| = ¢, Q-a.c.w for
some constant ¢,. Since @ is not a constant function, there exists n € Z \ {0} with
¢, # 0. By using @ if necessary, we may assume c_y # 0 for some N € N. Therefore, we
have &_y(Tw) = AeV~127Neg_ () Q-a.e.w. Thus if we put 3 = arg(@_y)/(27N) and
0 = (—arg(\))/(2nN), and K = Na+ (arg ) /(21) —arg(D_y)/(21) o7 +arg(P_y)/(27)
then K is Z-valued and we have

a=por—F+0+K/N.

If 6 could be rational, (T, m x @) is not ergodic by (1). Thus 6 is irrational. Hence we

have arrived at the result.
It remains to prove the assertion (3). Comparing with the classification in Theorem

5.2, it is not hard to see that (T, m x Q) is weak-mixing if and only if A(«) N27Z = {0}.
By (7) in Proposition 4.3 the condition implies that spectral radius of £ 5,y is less
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than 1 for any N € Z \ {0}. By virtue of Proposition 2.3 in [3], it is enough to complete
the table below.

Aa) Gla) |[(Tx,mx Q)
R {1} .
not ergodic
1G(a) < 00
€ 2rQ \ {0} ergodic bu
QZ ’ ' ﬂG(O&) = uoi) x:calf-mtixing
a¢2rQ\ {0} any
exact
{0} {1}
Now we have to show that for any @ € L'(m x P)
‘Ef’}mxpé—/ D d(m x P)hy —0 (n— o00), (xx)
’ TxQ 1,mxP

where hg is the density of the unique P-absolutely continuous probability measure Q).
Then it is enough to prove (xx) for @ having the form @(z,w) = ex(z)p(w) ((z,w) € TxN)

with e;(z) = eV=12™* (L € Z) and ¢ being of bounded variation. By an easy calculation
we obtain

£:Ln><P(€k(p) (xa w) = ek(x)ﬁiﬁzﬂkgo(w%

where £ /o = £, p_/Torka a8 before. Therefore by (7) in Theorem 4.3 we have

ey o] (L#im) e =0

0 (k#0)
= </ erpd(m X P)) ho
Tx
in L'(m x P). Now the proof is completed. O

7. SAMPLE-WISE ERGODIC PROPERTIES

Finally, we consider briefly some sample-wise properties. The following theorem tells us
that for the random rotation X with mixing L-Y noise, the ergodicity of the corresponding
skew product transformation T yields quenched ergodicity but we can not expect much
stronger quenched ergodic properties even if Tk is exact.

THEOREM 7.1. Let X = {X, }n>0 be a random rotation with dice variable o of bounded
variation and mixing L-Y noise 7. Then we have the following.
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(1) If (Tx,m x Q) is ergodic, there exists a measurable set I' € F with P(I') = 1 such
that if w € T, then for any initial data x € T, the sequence {X,(w)x},>o is uniformly
distributed in T, 1.e.

1 Z f( X, (w)z) — /fdm uniformly inx € T (n — o0)
T

for any f € C(T).

(2) Further we suppose that (Tx, m x Q) is ezxact. Consider the product system X?* =
X x X = {(Xn, X)) }uso with dice variable o and noise system 7. Then there exists a
measurable set A € F with P(A) =1 such that if w € A

n—1
Z F(X,(w)x, X, (w)y) — /F(x—y+u, w) m(du) uniformly in (z,y) € TXT (n — o0)

T

J=0

1
n

for any F € C(T x T). In particular, the system (Tx2,m? x Q) can not be ergodic, where

Ty is the skew product transformation corresponding to the product system X2.

Sketch of Proof. It is crucial that by virtue of the Ascoli-Arzela theorem, for f € C(T) and
F € C(T x T) and for any w, {f(X,(w))}n>o and {F(X,(w)-, X (w)-) }nso are relatively
compact in C(T) and C(T x T), respectively. Since both (1) and (2) are proved in the
similar way by the help of this fact and the ergodic theorem, we only explain about the
idea of the proof of (2).

If '€ C(TxT), by the ergodic theorem A, F'(z,y,w) = (1/n) > 7~ L F(X (W), X (w)y)
converges m* x P-a.e. to some F*(z,y,w) € L'(m? x Q). Since {A,F (-, -, w)}n>0 is rela-
tively compact in C'(T x T), the identification F*(z,y,w) with the deterministic function

/ F(x —y + u,u),m(du) is essential for the proof. This is verified as follows.
-
As in the above, we regard T as [0, 1) and use the e;(x) = eV 2™ for our convenience.

Let us consider the case when the Fourier series F(z,y) = 3, , Fuex(z)e(y) converges

fast enough. Take any real-valued G € C(T x T) whose Fourier series also converges
sufficiently fast and ¢ € BV on (). Then we have

/T T QF(X”(“)x7Xn(W)y)G(x,y)so(w) d(m? x P)

= ZFM G(z,y)er(z)e(y) dm? /ﬁfzw kH)(p(w) dpP

TxT

Q

= Z Fklékl / [’1\1/—71271'(k+l)<l0(w) dP. — Z Fh_kGAk,_k/ QP(W) dP
k,l Q k
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since (Tx, m x Q) is exact. By the Parseval theorem, we obtain

Zﬁk,—kékrk/@(w) dP
3 Q

— [([# s wnmian) ([ G+ o)) mao) [ otar

= /erg </1r Flz —y+u, u)m(du)) G(z,y)p(w)d(m* x P).

Therefore we have shown that the limit function F™* has a deterministic and continuous
version if the Fourier series of F' converges first enough. From this fact it is easy to see

that there exists a measurable set A € F with P(A) = 1 such that if w € A
1 n—1
— Z F(X,(w)z, X, (w)y) — /F(x—y+u, u) m(du) uniformly in (x,y) € TxT (n — o0)
n “ T

7=0
for any F'in a countable dense subset of C'(TxT). Thus the usual approximation argument
lead us to the desired result. UJ

REMARK 7.2. For a single measure-preserving system (7', 11) it is well known that (T, u)
is weak-mixing if and only if the product system (7" x T, X p) is ergodic (e.g. Walters
[6]). So Theorem 7.1 may be interpreted that the random rotation cannot be quenched
‘weak-mixing‘ even if the noise system is exact. This is an analogue of the fact that any
rotation cannot be weak-mixing.
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