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ABSTRACT. In this note, we briefly sketch our current state on the investigation, for random piecewise
convex maps, towards ergodic properties: the existence of o-finite invariant measures absolutely
continuous with respect to the Lebesgue measure, their ergodicity, and further limit theorems.

1. INTRODUCTION

Let X =[0,1], B be the Borel o-algebra and A be the Lebesgue probability measure on (X, B). A
piecewise convex map in the sense of Lasota—Yorke [5] is a map 7 : X — X such that there is a finite

partition 0 = ap < a1 < --- < ay = 1 satisfying

(1) for each k = 1,..., N the restriction 75, = T[4, ,q,) is continuous and convex in the sense
that 7 (tx + (1 — t)y) < trp(z) + (1 — t)7(y) for any z,y € [ak—1,axr) and 0 < ¢ < 1;

(2) T(ag_1) =0for each k=1,...,N;

(3) 7(0) > 1 and 7'(ag—1) > 0 for each k =2,..., N.

Lasota and Yorke showed in [5] the existence of a unique A-absolutely continuous invariant probability
measure /i for 7, where y is called invariant for 7 if u(771A) = u(A) holds for any A € B. Moreover,
they showed that the density of u is bounded and non-increasing, and that u is exact: ngO T"B =
{0, X} (mod ), which implies asymptotic stability of the system.

In the piecewise C'! setting, Inoue relaxed their condition (3) to that 7 can admit an indifferent fixed
point at 0 (i.e., 7/(0) = 1) and critical points (i.e., 7/(ak—1) = 0 for some k = 2,...,N). He proved
that a unique A-absolutely continuous exact invariant probability measure is still valid under certain
assumption (see [2]); otherwise any o-finite, A-absolutely continuous ergodic invariant measure is an
infinite measure and such an invariant measure exists (see [3]), which is unique up to multiplicative
constants. Here, a measure p is called ergodic if any E € B with 77 !FE = E (mod pu) satisfies either
E=0or X (mod u).

Motivated by their previous researches, we consider random piecewise convex maps as follows. We

introduce two probability spaces (A,v,) and (B, vp) as parameter spaces. For each aw € A and 8 € B,



a map Ty g is assigned which is of the form

- Tal (CCE[O,%]),
fos {Sﬂx ((3,1)

where 7, : [0,3] — X and Ss : (3,1] — X are injective and continuous maps with the following

conditions:
(0) The map A x B x X 3 (o, 8,2) — To,px € X is measurable with respect to each variables;
for vp-almost every a € A and vg-almost every § € B,

(1) 7, and Sg are C'-functions and Ss can be extended to a continuous function on [%, 1] with
T(0) =0, Ta(%) =1 and 55(%) =0;

(2) 7, and Sj are non-decreasing with 7,(0) > 1, 7,(z) > 1 for = € (0,3), Sé(%) > 0 and

Sp(x) >0 for x € (3,1).

A random piecewise convexr map {Ty p;va, v : o € A, § € B} is given by the transition probability

P(z, A) = /A IBglA(Ta,goc) dvy(a)dve(B3)

for each x € X and A € B, where T, g satisfies the above conditions.

2. MAIN RESULTS

Recall that for a transition probability P(z, A), a measure . is called invariant if [, P(x, A)dpu(z) =
u(A) for any A € B. Moreover, p is called ergodic if any set E € B with P(z, E) = 1g(x) p-almost
every x € X satisfies either £ = or X (mod p).

Theorem 2.1 ([4]). For a random piecewise convex map {Tp g;va,vp : @ € A, 5 € B}, if

/ ;dVA(a) < o0,
A

R
then there exists a unique (up to multiple constants) A-equivalent, o-finite invariant measure which is
ergodic such that

(Decreasing) the density function % 1S NON-increasing;
(Upper bound) for any e > 0, there is C > 0 such that fil—f\‘ < C on [g,1].
Moreover, if we assume essSUp,cp Tt'y(%) < 00, then we have

(Lower bound) there is ¢ > 0 such that % >ec.

Remark 2.1. In [4], we prove that the invariant measure p in Theorem 2.1 is indeed conservative.
Moreover, the asymptotic size of p close to 0 is also established so that we can tell whether y is finite

or not.

In what follows, we will see two examples of our theorem. The first example is random intermittent
maps with a critical point, which is a modified version of random LSV (Liverani—Saussol-Vaienti)

maps. The second one is random piecewise linear maps which have no indifferent (on average) fixed



point but exhibit critical-type intermittency (cf. [1]). We can establish for this further statistical

properties. For the precise information and motivation, see [7, 8] and references therein.

2.1. Random intermittent maps with a critical point. Let A = [a1, ag] for some 0 < a1 < ao,
B C (1,00) be a compact set, and va and vg be probability measures. For each a@ € A and 8 € B,
set 7, =z + 2% and S5 = (2z — 1)% and consider a random piecewise convex map {Twp;va,ve :
a € A,B € B}. Note that 0 is an indifferent fixed point for cach o € A and % is a critical point
for each € B. Then by Theorem 2.1 there always exits a A-equivalent, ergodic, o-finite invariant
measure p. Furthermore, pu(X) = co if up{f € B: @18 > 1} > 0 and p(X) < oo if ag - maxg 8 < 1.
Roughly speaking, this means that the most expanding branch 7, on the left and the most contracting
branch Sz on the right determine the statistical law of the system. We remark that when B = {1}
and Sg = 2z — 1, that is, for random LSV maps, it holds that u(X) = oo if and only if a; > 1.

2.2. Random piecewise linear maps with low slopes. Let B = N and pg = vg({5}) be a point

2z—1
28

measure on B. We set 7, = 2z (independent of the choice of & € A) and Sgx = and consider
a random piecewise convex map {Is;ps : § € N}. Note that this system has no indifferent (even on
average) fixed point nor critical point, but it does have strong contracting property (as 8 — o0) on
average depending on pg. As in Theorem 2.1, the invariant measure p always exists for any pg. If
we choose pg = 270 for B € N then u(X) < oo, since the probability of the choice of low slopes (i.e.,
large 3) is exponentially small. However, when we set ps = C3~" for 8 € N where t > 1 and C is a
normalizing constant, one can see that u(X) = oo if and only if ¢ € (1,2]. Since we are interested in
statistical properties of infinite measure preserving (random) systems, hereafter we assume ¢ € (1, 2]

and set s :==¢ —1 € (0,1]. Since each map T is piecewise linear, we can obtain exact formula of the

density function of  and consequently, we get

y ((2—("“)7 2—"}) x> (2.1)

Then, by the equation (2.1), one can calculate the wandering rate and the asymptotic entrance density
for the reference set [4,1] (see [6] for the definitions) corresponding to the skew-product transforma-
tion associated with the random map. That is, one can apply Thaler—Zweimiiller’s distributional limit
theorem in [6] to the system. Let {T(™},, be a random dynamics given by T(") = f, 0 f, 1 0---0 fi,
where {f,}» denotes an i.i.d. sequence of random maps such that f,, = Tz with probability ps for any
n > 1. Then one gets the Darling—Kac law as follows. Below N%o means the convergence in distri-
bution and M, denotes the normalized Mittag-Lefler distribution of order s, which is characterized

2 oo T(14s)*zF
by Ele"M:] = 537 Hidha

Theorem 2.2 ([8]). Fiz s € (0,1). For any random variable © with values in [%

5, 1], which is

independent of the random map {fn}n and whose distribution is absolutely continuous with respect to



A and for any E C [3,1], it holds that

N-1
1 d
e 2 Lroveres) vk, CalE) M,
n=0

where Cs is a positive constant depending only on s.

Remark 2.2. (1) Since the wandering rate and the asymptotic entrance density are estimated
in the proof of the above theorem, one can also establish the Dynkin-Lamperti arcsine law
for waiting times in [6] for this system.

(2) Even when s = 1, the Darling-Kac law and the Dynkin-Lamperti arcsine law above are still
valid under a small modification.

(3) For the case when p(X) < oo (i.e, t > 2), it seems not hard to see polynomial decay of
(annealed) correlation for appropriate observables. We will investigate them (and more general

random piecewise convex maps as in §2.1).
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