Isolated eigenvalues of the Perron-Frobenius operators for random beta-maps

Shintaro Suzuki Department of Mathematics, Tokyo Gakugei University

1 Introduction

Let $\beta > 0$. The beta-map $\tau_{\beta} : [0,1] \to [0,1]$ is defined by

$$\tau_{\beta}(x) = \beta x - [\beta x]$$

for $x \in [0,1]$, where [y] denotes the integer part of $y \in \mathbb{R}$. For $\beta > 1$ the beta-map is known as a map generating expansions of real numbers with the base β and has been investigated after [12] at the intersection of ergodic theory and number theory (e.g., [5], [11]). In this paper, we consider an i.i.d. random dynamical system generated by beta-maps and investigate isolated eigenvalues of its sample-averaged (or annealed) Perron-Frobenius operator. As a main result, we give a formula for a certain analytic function, each of whose zero is the inverse of an isolated eigenvalue of the sample-averaged Perron-Frobenius operator. This formula is a natural generalization of deterministic cases given in [4] and [8].

2 Deterministic beta-maps

2.1 Beta-expansions

For $\beta > 1$ it is well-known that the map τ_{β} gives an expansion of $x \in [0,1]$ as follows. Since

$$x = \frac{[\beta x]}{\beta} + \frac{\tau_{\beta}(x)}{\beta}$$

for $x \in [0,1]$, we have

$$\tau_{\beta}^{n}(x) = \frac{[\beta \tau_{\beta}^{n}(x)]}{\beta} + \frac{\tau_{\beta}^{n+1}(x)}{\beta}$$

for $n \geq 0$. Using the above equations inductively, we obtain

$$x = \sum_{n=1}^{N} \frac{\left[\beta \tau_{\beta}^{n-1}(x)\right]}{\beta^n} + \frac{\tau_{\beta}^{N}(x)}{\beta^N}$$

for $N \ge 1$. Set $a_n(\beta, x) = [\beta \tau_{\beta}^{n-1}(x)]$ for $n \ge 1$. Taking $N \to +\infty$ on the right side of the above equation provides the greedy expansion of x:

$$x = \sum_{n=1}^{\infty} \frac{a_n(\beta, x)}{\beta^n}.$$

2.2 Perron-Frobenius operators

Let us denote by l the Lebesgue measure on [0,1] and by $(L^1(l), ||\cdot||_1)$ the Banach space of integrable functions with respect to the Lebesgue measure l. For a positive constant $\beta > 0$, we define the Perron-Frobenius operator for the corresponding map τ_{β} by

$$\mathcal{L}_{\beta}f(x) = \frac{1}{\beta} \sum_{y: x = \tau_{\beta}(y)} f(y)$$

for $x \in [0,1]$ and $f \in L^1(l)$. This operator is linear and bounded on $L^1(l)$ with $||\mathcal{L}_{\beta}f||_1 = ||f||_1$ for $f \in L^1(l)$. For a function $f : [0,1] \to \mathbb{C}$ denote by $\bigvee f$ the total variation of f. We define

$$|f|_{BV} = \inf \left\{ \bigvee f^*; f^* \text{is a version of } f \right\}.$$

Set $BV = \{ f \in L^1(l) ; |f|_{BV} < \infty \}$ and

$$||f||_{BV} = ||f||_1 + |f|_{BV}$$

for $f \in BV$. Then $(BV, ||\cdot||_{BV})$ is a Banach space and the Perron-Frobenius operator is linear and bounded on $(BV, ||\cdot||_{BV})$ (e.g., [1], [3], [9], [10]). If $\beta > 1$, we know that the map τ_{β} is uniformly expanding and the corresponding Perron-Frobenius operator \mathcal{L}_{β} is quasi-compact, i.e., for any spectral value $\lambda \in \mathbb{C}$ whose modulus is greater than $1/\beta$ is an isolated eigenvalue with finite multiplicity, which plays an important role in investigating the ergodic properties of τ_{β} (e.g., [1], [3], [9], [10]).

Denote by BV^* the set of complex-valued linear functionals on BV. Let us define the dual operator of the Perron-Frobenius operator $\mathcal{L}_{\beta}^*: BV^* \to BV^*$ by

$$\mathcal{L}_{\beta}^*(\nu(f)) = \nu(\mathcal{L}_{\beta}f)$$

for $\nu \in BV^*$ and $f \in BV$.

2.3 Isolated eigenvalues of \mathcal{L}_{β}

Let $\beta > 1$. We define the power series $\phi_{\beta}(z)$ associated to the coefficient sequence $\{a_n(\beta,1)\}_{n=1}^{\infty}$ by

$$\phi_{\beta}(z) = \sum_{n=1}^{\infty} \frac{a_n(\beta, 1)}{\beta^n} z^n.$$

We can easily see that the convergence radius of $\phi_{\beta}(z)$ is at least β . For the analytic function $1 - \phi_{\beta}(z)$ defined on $\{z \in \mathbb{C}; |z| < \beta\}$, we have the following:

Theorem 2.1. A complex number λ with $1/\beta < |\lambda| \le 1$ is an isolated eigenvalue of \mathcal{L}_{β} if and only if λ^{-1} is a zero of $1 - \phi_{\beta}(z)$.

The proof of the above theorem is deduced from an explicit formula for the analytic continuation of the dynamical zeta function of τ_{β} in [8] (see also [4]) and application of the results in [2] (or [6]) to our setting, which yields that each zero of its continuation is the inverse of an isolated eigenvalue of \mathcal{L}_{β} , and vice versa.

The main result of this paper is a generalization of the above theorem to random dynamical systems generated by beta-maps. In the setting of random dynamical systems, however, there are few results for dynamical zeta functions, including their analytic continuation. In this paper, we use a new approach derived from a formula for an eigenfunctional of the Perron-Frobenius operator, described in deterministic cases in the following. A key ingredient is the following equation:

Lemma 2.2. Let $n \geq 0$ be a non-negative integer. Then we have

$$\mathcal{L}_{\beta}\mathbf{1}_{[0,\tau_{\beta}^{n}(x)]} = \frac{a_{n+1}(\beta,x)}{\beta}\mathbf{1}_{[0,1]} + \frac{1}{\beta}\mathbf{1}_{[0,\tau_{\beta}^{n+1}(x)]},$$

where $\mathbf{1}_A$ denote the indicator function of A.

The above lemma yields the following formula:

Theorem 2.3. Let $\lambda \in \mathbb{C}$ be an isolated eigenvalue of the Perron-Frobenius operator \mathcal{L}_{β} with $|\lambda| > 1/\beta$ and let $\nu \in BV^*$ be a non-zero eigenfunctional corresponding to λ . Then for $x \in [0,1]$ we have

$$\nu(\mathbf{1}_{[0,x]}) = \nu(\mathbf{1}_{[0,1]}) \sum_{n=1}^{\infty} \frac{a_n(\beta, x)}{\beta^n \lambda^n}.$$
 (2.1)

In addition, $\nu(\mathbf{1}_{[0,1]}) \neq 0$ and the geometric multiplicity of \mathcal{L}_{β} is 1.

By taking x = 1 in the equation (2.1), we obtain the following result.

Theorem 2.4. Let $\lambda \in \mathbb{C}$ with $|\lambda| > 1/\beta$ be an isolated eigenvalue of \mathcal{L}_{β} . Then

$$\sum_{n=1}^{\infty} \frac{a_n(\beta, 1)}{\beta^n \lambda^n} = 1.$$

That is, λ^{-1} is a zero of an analytic function $1 - \phi_{\beta}(z)$.

The above theorem states that any isolated eigenvalues of \mathcal{L}_{β} is the inverse of a zero of $1 - \phi_{\beta}(z)$. In fact, as in the construction of an eigenfunction of \mathcal{L}_{β} in [13], we have that the inverse of any zero of $1 - \phi_{\beta}(z)$ is actually an isolated eigenvalue of \mathcal{L}_{β} .

Theorem 2.5. Let λ^{-1} be a zero of $1 - \phi_{\beta}(z)$ with $1 \leq |\lambda^{-1}| < \beta$. Set

$$h = C \sum_{m=0}^{\infty} \frac{\mathbf{1}_{[0,\tau_{\beta}^{m}(1)]}}{\beta^{m} \lambda^{m}},$$

where C is a non-zero constant. Then h is a non-zero function of bounded variation satisfying $\mathcal{L}_{\beta}h = \lambda h$. In particular, λ is an eigenvalue of \mathcal{L}_{β} .

By Theorem 2.4 and Theorem 2.5, we reprove Theorem 2.1 not using the theory of dynamical zeta functions. Our main result in this paper is a generalization of Theorem 2.1 to random beta-maps, whose proof is given by an analogue of Theorem 2.4 and 2.3 to random cases.

3 Random beta-maps

3.1 Setting

Let \mathcal{A} be a set of finite positive integers $\{1,\ldots,n\}$ or all positive integers $\{1,2,\ldots\}$. Denote by $2^{\mathcal{A}}$ the power set of \mathcal{A} . Let $\hat{\mathbb{P}}$ be a Bernoulli measure on \mathcal{A} . For the product space $(\Omega,\mathcal{F},\mathbb{P})=(\mathcal{A},2^{\mathcal{A}},\hat{\mathbb{P}})^{\mathbb{N}}$, let $\theta:\Omega\to\Omega$ be the left shift on it, defined by $\theta((\omega_i)_{i=1}^\infty)=(\omega_{i+1})_{i=1}^\infty$ for $(\omega_i)_{i=1}^\infty$. Let $\hat{\beta}:\mathcal{A}\to(0,\infty)$ be a measurable function and define the function $\beta:\Omega\to(0,\infty)$ by $\beta((\omega_i)_{i=1}^\infty)=\hat{\beta}(\omega_1)$ for $(\omega_i)_{i=1}^\infty\in\Omega$. Then the function β is a positive measurable function on (Ω,\mathcal{F}) and the random variables $\{\beta\circ\theta^n\}_{n=0}^\infty$ are i.i.d. on $(\Omega,\mathcal{F},\mathbb{P})$. We define the map $\tau:\Omega\times[0,1]\to[0,1]$ by $(\omega,x)\mapsto\tau_{\beta(\omega)}(x)$. Then the random dynamical system can be represented by the skew-product map $R(\omega,x)=(\theta\omega,\tau(\omega,x))$ for $(\omega,x)\in\Omega\times[0,1]$. For simplicity, we write $\tau_\omega(\cdot)=\tau(\omega,\cdot)$ for $\omega\in\Omega$. By setting $\tau_\omega^0=id$ and $\tau_\omega^n=\tau_{\theta^{n-1}\omega}\circ\ldots\tau_\omega$ for $\omega\in\Omega$ and $n\geq 1$, where id denotes the identity map on [0,1], we can write the n-th iteration of the skew product map

$$R^n(\omega, x) = (\theta^n \omega, \tau_\omega^n(x))$$

for $(\omega, x) \in \Omega \times [0, 1]$.

3.2 Random beta-expansions

As a generalization of beta-expansions generated by a single beta-map, the random dynamical systems as defined above generate multiple base expansions of $x \in [0,1]$ as follows. Set $\beta_{\omega}^{(0)} = 1$ and

$$\beta_{\omega}^{(n)} = \prod_{i=0}^{n-1} \beta(\theta^i \omega)$$

for $\omega \in \Omega$ and $n \geq 1$. We write $\beta_{\omega} = \beta_{\omega}^{(1)} = \beta(\omega)$ for simplicity. Define the digit function by $d_n(\omega, x) = [\beta_{\theta^{n-1}\omega}\tau_{\omega}^{n-1}(x)]$ for $(\omega, x) \in \Omega \times [0, 1]$ and $n \geq 1$. Then

by the definition of the map τ , we have

$$x = \frac{[\beta_{\omega} x]}{\beta_{\omega}} + \frac{\tau_{\omega}(x)}{\beta_{\omega}}$$

for $(\omega, x) \in \Omega \times [0, 1]$. By the fact that

$$\tau_{\omega}^{n}(x) = \frac{\left[\beta_{\theta^{n}\omega}\tau_{\omega}^{n}(x)\right]}{\beta_{\theta^{n}\omega}} + \frac{\tau_{\omega}^{n+1}(x)}{\beta_{\theta^{n}\omega}}$$

for $n \geq 0$, we obtain

$$x = \frac{[\beta_{\omega}x]}{\beta_{\omega}} + \frac{\tau_{\omega}(x)}{\beta_{\omega}}$$

$$= \frac{[\beta_{\omega}x]}{\beta_{\omega}} + \frac{[\beta_{\theta\omega}\tau_{\omega}(x)]}{\beta_{\omega}\beta_{\theta\omega}} + \frac{\tau_{\omega}^{2}(x)}{\beta_{\omega}\beta_{\theta\omega}}$$

$$= \cdots$$

$$= \sum_{n=1}^{N} \frac{d_{n}(\omega, x)}{\beta_{\omega}^{(n)}} + \frac{\tau_{\omega}^{N}(x)}{\beta_{\omega}^{(N)}}$$

for $N \geq 2$. Note that $\tau_{\omega}^{n}(x) \in [0,1]$ for $n \geq 0$. Then under the assumption that

$$(\beta_{\omega}^{(n)})^{-1} \to 0$$

as $n \to \infty$, we have

$$x = \sum_{n=1}^{\infty} \frac{d_n(\omega, x)}{\beta_{\omega}^{(n)}}.$$

One of the sufficient conditions which guarantees $(\beta_{\omega}^{(n)})^{-1} \to 0$ as $n \to \infty$ for \mathbb{P} -a.e. $\omega \in \Omega$ is the following.

Lemma 3.1. If

$$\int_{\Omega} \frac{d\mathbb{P}(\omega)}{\beta(\omega)} < 1, \tag{3.1}$$

then for \mathbb{P} -a.e. $\omega \in \Omega$ we have

$$(\beta_\omega^{(n)})^{-1} \to 0$$

as $n \to \infty$.

3.3 Sample-averaged Perron-Frobenius operators

Let us define the sample averaged (or annealed) Perron-Frobenius operator $\mathcal L:L^1(l)\to L^1(l)$ by

$$\mathcal{L}f = \int_{\Omega} (\mathcal{L}_{\beta(\omega)} f) d\mathbb{P}$$

for $f \in L^1(l)$. We note that this operator is well-defined by the inequality

$$||\mathcal{L}_{\beta(\omega)}f||_{1} \leq \int_{0}^{1} \int_{\Omega} |\mathcal{L}_{\beta(\omega)}f| d\mathbb{P}dl \leq \int_{\Omega} \int_{0}^{1} |\mathcal{L}_{\beta(\omega)}f| dl d\mathbb{P} \leq ||f||_{1}$$

for $f \in L^1(l)$, which also ensures that the operator \mathcal{L} is bounded. The fact that the operator \mathcal{L} is linear follows from its definition. Assume that

$$\int_{\Omega} \frac{d\mathbb{P}(\omega)}{\beta(\omega)} = \int_{\hat{\Omega}} \frac{d\hat{\mathbb{P}}(a)}{\hat{\beta}(a)} < 1.$$

By applying Lemma 6.7 in [7] to our setting, we have that \mathcal{L} is well-defined as a linear bounded operator on BV and it is quasi-compact, i.e., any spectral value $\lambda \in \mathbb{C}$ whose modulus is greater than $\int_{\Omega} d\mathbb{P}(\omega)/\beta(\omega)$ is an isolated eigenvalue with finite multiplicity. In addition, 1 is actually this eigenvalue of \mathcal{L} , which ensures the existence of an R-invariant probability measure μ absolutely continuous with respect to $\mathbb{P} \times l$. Let \mathcal{U} be the set of all functions of the form $\sum_{i=1}^{n} a_i f_i$, where $n \geq 1$, $a_i \in \mathbb{C}$ and f_i is an indicator function of some interval in [0,1] for $1 \leq i \leq n$. Let \mathcal{F} be the closure of \mathcal{U} in the sense of the topology derived from the norm $||\cdot||_{BV}$ in BV. Then we can see that $\mathcal{LF} \subset \mathcal{F}$ and \mathcal{L} is a linear bounded operator, which is quasi-compact on $(\mathcal{F}, ||\cdot||_{BV})$. Since $\mathbf{1}_{[0,1]} \in \mathcal{F}$ we know that 1 is also an isolated eigenvalue of \mathcal{L} on \mathcal{F} .

4 Main results

Let $\Phi(z)$ be the formal power series defined by

$$\Phi(z) = \sum_{n=1}^{\infty} \left(\int_{\Omega} \frac{d_n(\omega, 1)}{\beta_{\omega}^{(n)}} d\mathbb{P} \right) z^n.$$

Since

$$\frac{d_n(\omega, 1)}{\beta_{\omega}^{(m)}} \le \frac{1}{\beta_{\omega}^{(n-1)}}$$

for $\omega \in \Omega$ and $n \geq 1$, we have that the convergence radius of $\Phi(z)$ is at least $\left(\int_{\Omega} \frac{d\mathbb{P}(\omega)}{\beta(\omega)}\right)^{-1} > 1$. The main result in this paper is the following.

Theorem 4.1. A complex number λ with $\int_{\Omega} \frac{d\mathbb{P}(\omega)}{\beta(\omega)} < |\lambda| \leq 1$ is an isolated eigenvalue of \mathcal{L} defined on \mathcal{F} if and only if λ^{-1} is a zero of $1 - \Phi(z)$.

Remark 4.2. (1) The above theorem states that the mean value of *n*-terms of random beta expansions of 1 determines all isolated eigenvalues of \mathcal{L} outside the closed disk whose radius is $\int_{\Omega} \frac{d\mathbb{P}(\omega)}{\beta(\omega)}$, which can be seen as a natural generalization of Theorem 2.1.

(2) The proof of Theorem 4.1 is given by a generalization of Theorem 2.3 and that of Theorem 2.4 to random beta-maps, which also yields an explicit formula for any eigenfunction and that for a value of any eigenfunctional applied to the indicator function of some interval corresponding to an isolated eigenvalue of \mathcal{L} .

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number 20K14331 and 24K16932.

References

- [1] Baladi, V.: Positive Transfer Operators and Decay of Correlations, Vol. 16, World Scientific, Singapore, 2000.
- [2] Baladi, V., and Keller, G., Zeta functions and transfer operators for piecewise monotone transformations, Commun. Math. Phys., 127 (1990), 459-478.
- [3] Boyarsky. A., Góra, P. Laws of Chaos. Invariant measures and dynamical systems in one dimension, Probability and its Applications. Birkhäuser, Boston, MA, 1997.
- [4] Flatto, L., Lagarias, J., Poonen, B. The zeta function of the beta transformation, Ergod. Th. & Dynam. Sys. 14 (1994), 237–266.
- [5] Gel'fond, A. A common property of number systems, Izv. Akad. Nauk SSSR. Ser. Mat. 23 (1959), 809–814.
- [6] Hofbauer, F., Keller, G., Zeta functions and transfer-operators for piecewise linear transformations, J.Reine Angew. Math., **352** (1984), 100–113.
- [7] Inoue, T. Invariant measures for position dependent random maps with continuous random parameters, Studia Math. 208 (2012), 11–29.
- [8] Ito, S., Takahashi, Y., Markov subshifts and realization of β -expansions, J. Math. Soc. Japan, **26** (1973), 33–55.
- [9] Lasota, A., Yorke, J. On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Sci. 186 (1973), 481–488.
- [10] Li, T., Yorke, J. Ergodic transformations from an interval into itself, Trans. Amer. Math. Sci. 235 (1978), 183–192.
- [11] Parry, W. On the β -expansions of real numbers, Acta. Math. Acad. Sci. Hung. 11 (1960), 401–416.
- [12] Rényi, A. Representations for real numbers and their ergodic properties, Acta. Math. Acad. Sci. Hung. 8 (1957), 477–493.
- [13] Suzuki, S., Eigenfunctions of the Perron–Frobenius operators for generalized beta-maps, Dynamical Systems, **37** (2021), 9–28.

Department of Mathematics Tokyo Gakugei University Tokyo 184-8501 Japan E-mail address: shin05@u-gakugei.ac.jp

東京学芸大学・教育学部 鈴木新太郎