[solated eigenvalues of the Perron-Frobenius
operators for random beta-maps

Shintaro Suzuki
Department of Mathematics,
Tokyo Gakugei University

1 Introduction
Let 8 > 0. The beta-map 75 : [0,1] — [0, 1] is defined by

8(z) = fr — [fz]

for x € [0,1], where [y] denotes the integer part of y € R. For g > 1 the
beta-map is known as a map generating expansions of real numbers with the
base 8 and has been investigated after [12] at the intersection of ergodic theory
and number theory (e.g., [5], [11]). In this paper, we consider an i.i.d. random
dynamical system generated by beta-maps and investigate isolated eigenvalues
of its sample-averaged (or annealed) Perron-Frobenius operator. As a main
result, we give a formula for a certain analytic function, each of whose zero is
the inverse of an isolated eigenvalue of the sample-averaged Perron-Frobenius
operator. This formula is a natural generalization of deterministic cases given
in [4] and [8].

2 Deterministic beta-maps

2.1 Beta-expansions
For 8 > 1 it is well-known that the map 75 gives an expansion of = € [0, 1] as
follows. Since
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for z € [0,1], we have
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for n > 0. Using the above equations inductively, we obtain
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for N > 1. Set a,(8,2) = [57';;_1(1")] for n > 1. Taking N — +o0o on the right
side of the above equation provides the greedy expansion of x:
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2.2 Perron-Frobenius operators

Let us denote by [ the Lebesgue measure on [0,1] and by (L(I),|| - ||1) the
Banach space of integrable functions with respect to the Lebesgue measure I.
For a positive constant 5 > 0, we define the Perron-Frobenius operator for the
corresponding map 73 by

1
Lof@ =5 > fW)
yiz=Tp(y)
for x € [0,1] and f € L*(I). This operator is linear and bounded on L!(l) with

[|Lsf]l1 = ||f]]1 for f € L1(l). For a function f : [0,1] — C denote by \/ f the
total variation of f. We define

|flev = inf{\/ f*; f*is a version of f}.

Set BV ={f e L) ; |flpv < oo} and

I1fllBv = lIfll1 + |flBV

for f € BV. Then (BV,||-||pyv) is a Banach space and the Perron-Frobenius
operator is linear and bounded on (BV, ||-||sv) (e.g., [1], [3], [9], [10]). If B > 1,
we know that the map 75 is uniformly expanding and the corresponding Perron-
Frobenius operator L3 is quasi-compact, i.e., for any spectral value A € C whose
modulus is greater than 1/8 is an isolated eigenvalue with finite multiplicity,
which plays an important role in investigating the ergodic properties of 73 (e.g.,
1], [3), [9], [10)).

Denote by BV™ the set of complex-valued linear functionals on BV. Let us
define the dual operator of the Perron-Frobenius operator £ : BV* — BV by

L(v(f)) =v(Lsf)
for v € BV* and f € BV.

2.3 Isolated eigenvalues of L3

Let 8 > 1. We define the power series ¢g(z) associated to the coefficient se-
quence {an(6,1)}72; by




We can easily see that the convergence radius of ¢3(z) is at least 5. For the
analytic function 1 — ¢g(z) defined on {z € C;|z| < 3}, we have the following:

Theorem 2.1. A complex number \ with 1/8 < |A\| <1 is an isolated eigenvalue
of Lg if and only if \™1 is a zero of 1 — ¢p(2).

The proof of the above theorem is deduced from an explicit formula for the
analytic continuation of the dynamical zeta function of 75 in [8] (see also [4])
and application of the results in [2] (or [6]) to our setting, which yields that
each zero of its continuation is the inverse of an isolated eigenvalue of Lg, and
vice versa.

The main result of this paper is a generalization of the above theorem to
random dynamical systems generated by beta-maps. In the setting of random
dynamical systems, however, there are few results for dynamical zeta functions,
including their analytic continuation. In this paper, we use a new approach
derived from a formula for an eigenfunctional of the Perron-Frobenius opera-
tor, described in deterministic cases in the following. A key ingredient is the
following equation:

Lemma 2.2. Letn > 0 be a non-negative integer. Then we have

an+1(/3 x) 1
Lolpmpen = — 5 Lo+ 5losp @

where 1 4 denote the indicator function of A.
The above lemma yields the following formula:

Theorem 2.3. Let A € C be an isolated eigenvalue of the Perron-Frobenius
operator Lg with |A| > 1/8 and let v € BV* be a non-zero eigenfunctional
corresponding to A. Then for x € [0,1] we have

— an(f, )
v(1j0,2)) = v(1j0,1]) Z B (2.1)
n=1
In addition, v(1j 1)) # 0 and the geometric multiplicity of Lg is 1.
By taking = 1 in the equation (2.1), we obtain the following result.
Theorem 2.4. Let A € C with |A| > 1/8 be an isolated eigenvalue of Lg. Then

an(8,1)
z:: ﬂn)\n

That is, \=' is a zero of an analytic function 1 — ¢g(z).

The above theorem states that any isolated eigenvalues of Lg is the inverse
of a zero of 1 — ¢3(z). In fact, as in the construction of an eigenfunction of Lz
in [13], we have that the inverse of any zero of 1 — ¢4(2) is actually an isolated
eigenvalue of Lg.



Theorem 2.5. Let \™! be a zero of 1 — ¢p(z) with 1 < A7 < B. Set

h=0C Z [;7:;;:7” ’

m=0

where C' is a non-zero constant. Then h is a non-zero function of bounded
variation satisfying Lgh = Ah. In particular, A is an eigenvalue of Lg.

By Theorem 2.4 and Theorem 2.5, we reprove Theorem 2.1 not using the
theory of dynamical zeta functions. Our main result in this paper is a gen-
eralization of Theorem 2.1 to random beta-maps, whose proof is given by an
analogue of Theorem 2.4 and 2.3 to random cases.

3 Random beta-maps

3.1 Setting

Let A be a set of finite positive integers {1,...,n} or all positive integers
{1,2,...}. Denote by 24 the power set of A. Let P be a Bernoulli measure on A.
For the product space (Q, F,P) = (A4, 24, P)N, let 6 : Q — Q be the left shift on
it, defined by 0((w;)$2) = (wi+1)2, for (wi)2,. Let B: A — (0,00) be a mea-
surable function and define the function 8 : Q — (0,00) by B((w:)2,) = Blw:)
for (w;)52, € Q. Then the function § is a positive measurable function on (€, F)
and the random variables {$060"}22 are i.i.d. on (2, F,P). We define the map
71 Qx[0,1] — [0,1] by (w,z) = Tg(w)(x). Then the random dynamical sys-
tem can be represented by the skew-product map R(w,z) = (fw,7(w,x)) for
(w,z) € Qx [0, 1]. For simplicity, we write 7,,(-) = 7(w, ) for w € Q. By setting

9 =id and 77 = Tyn 1,0...7, for w € Q and n > 1, where id denotes the

w
identity map on [0, 1], we can Write the n-th iteration of the skew product map
as

R (w, ) = (0"w,75(x))
for (w,z) € Q x [0,1].

3.2 Random beta-expansions

As a generalization of beta-expansions generated by a single beta-map, the
random dynamical systems as defined above generate multiple base expansions

of z € [0,1] as follows. Set AY =1 and

n—1
so = 1] Bo'w)
=0

for w € Q and n > 1. We write 8, = D — = B(w) for simplicity. Define the digit
function by d,,(w,z) = [Bgn—1,75" 1(13)] for (w,z) € 2 x[0,1] and n > 1. Then



by the definition of the map 7, we have
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for (w,x) € Q2 x [0,1]. By the fact that
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for n > 0, we obtain
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for N > 2. Note that 7]}(z) € [0,1] for n > 0. Then under the assumption that

as n — oo, we have

One of the sufficient conditions which guarantees (30”)~1 — 0 as n — oo for
P-a.e. w € € is the following.

Lemma 3.1. If

dP(w)
/Q,B(w) <1, (3.1)

then for P-a.e. w € Q we have
BE) =0

as n — 00.

3.3 Sample-averaged Perron-Frobenius operators

Let us define the sample averaged (or annealed) Perron-Frobenius operator £ :
LY(l) = L'(I) by

M:Awmmw



for f € L'(I). We note that this operator is well-defined by the inequality

1 1
L5 1l < / / L) f|dPAL < / / |50 FlLP < £

for f € L'(1), which also ensures that the operator £ is bounded. The fact that
the operator L is linear follows from its definition. Assume that

/ dP(w) / dP(a)
= = < 1.

o Bw) a Ba)

By applying Lemma 6.7 in [7] to our setting, we have that £ is well-defined as a
linear bounded operator on BV and it is quasi-compact, i.e., any spectral value
A € C whose modulus is greater than [, dP(w)/f(w) is an isolated eigenvalue
with finite multiplicity. In addition, 1 is actually this eigenvalue of £, which
ensures the existence of an R-invariant probability measure p absolutely con-
tinuous with respect to P x [. Let U be the set of all functions of the form
Z:;l a; f;, where n > 1, a; € C and f; is an indicator function of some interval
in [0,1] for 1 <4 < n. Let F be the closure of U in the sense of the topology
derived from the norm || - ||gy in BV. Then we can see that LF C F and
L is a linear bounded operator, which is quasi-compact on (F, || - ||sv). Since
1j0,1) € F we know that 1 is also an isolated eigenvalue of £ on F.

4 Main results

Let ®(z) be the formal power series defined by

[ee]

D(z) = Z (/” Md[@) 2"

n=1 ﬁb(vn )

Since
dp(w,1) 1
) = e
B B
for w € Q and n > 1, we have that the convergence radius of ®(z) is at least

dP -1
( / (w)) > 1. The main result in this paper is the following.
o Bw)

dP(w)

o Bw)
eigenvalue of L defined on F if and only if A= is a zero of 1 — ®(2).

Theorem 4.1. A complex number X\ with < |A <1 is an isolated

Remark 4.2. (1) The above theorem states that the mean value of n-terms of
random beta expansions of 1 determines all isolated eigenvalues of £ outside

dP(w)

the closed disk whose radius is / W, which can be seen as a natural gen-
0 Plw

eralization of Theorem 2.1.



(2) The proof of Theorem 4.1 is given by a generalization of Theorem 2.3 and
that of Theorem 2.4 to random beta-maps, which also yields an explicit formula
for any eigenfunction and that for a value of any eigenfunctional applied to the
indicator function of some interval corresponding to an isolated eigenvalue of L.
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