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Abstract

We introduce a definition of iterated functions systems which is more general than
the ones introduced before, and present a theorem on the existence and uniqueness
of the family of the limit sets generated by general IFSs, instead of the limit set
introduced before, under the “natural” assumption. In addition, we also give some
examples of general IF'Ss to discuss the necessity of the assumption and the importance
of the properties in the main result.

1 Introduction

Many researchers have developed studies on the limit set by generalized iterated function
systems (for short, generalized IFSs) in many directions. In fact, there are at least three
lines in these studies. The studies in the first line ensure the existence of the limit set
generated by non-autonomous IFSs (and some generalizations; for example, see [9] and [1]).
These papers also give theorems on the estimates of the dimensions and measures of the
limit sets. The studies in the second line discuss the existence of the limit set (V-variable
fractals) generated by generalized IFSs (V-variable IFSs). These studies also give theorems
on estimates of the Hausdorff dimension of the limit sets using probabilistic techniques
(for example, see [2], [3] and [10]). The studies in the third line present estimates on
the dimensions of the limit set (the Moran set) generated by “nice” structures (Moran
structures; for example, see [8], [5] and [4]).

However, these studies propose different definitions and assumptions to deduce a “nice”
structure of the limit set generated by each generalized IFS. The papers in the first line
consider non-autonomous IFSs on compact sets to obtain the results (in particular, the
existence of the limit sets). The papers in the second line consider V-variable IFSs with
assumptions which allow us to restrict the domains of the IFSs to a bounded set. The
papers in the third line consider Moran structures and the Moran set with assumptions
which allow us to obtain the results. Therefore, we do not clearly know how these studies
are related to each other.

As the first approach to address the issue, we now consider more general IFSs (hence-
forth, denoted by general IFSs) and give a theorem on the existence and uniqueness (in
some sense) of the limit set generated by general IFSs. Recall the Hutchinson method:
we interpret the limit set as the fixed point of a “natural” operator on the set of compact
subsets (see [7]). An advantage of this method is to obtain not only the existence but also
the uniqueness of the limit set. We focus on this advantage and extend the method to a
generalized setting. More precisely, we first introduce a definition of IFSs which is more



general than the ones introduced before. We next consider the set of families of compact
subsets instead of the set of compact subsets. Then, under a “natural” assumption, we
obtain the fixed point of a “natural” operator on the set of families of compact subsets
(main result). By this generalization, we finally deduce the existence and uniqueness of
the family of the limit sets. After the main result, we also present the connection between
the family of limit sets and the limit set mentioned in the first paragraph (henceforth, de-
noted by the original limit set). Hence, the aim of this paper is to introduce more general
IFSs and to present a theorem on the existence and uniqueness of the family of the limit
sets generated by general IFSs, instead of the original limit set.

It is worth mentioning that the family of the limit sets generated by general IFSs
is characterized not only by the (generalized) self-similarity, but also by the “summable”
condition (for details, see Theorem 2.5). Recall that the limit set generated by autonomous
IFSs is characterized by the unique compact subset with self-similarity. We also give some
examples of general IFSs to discuss the necessity of the assumption and the importance
of the properties in the main result (see Examples 3.1 ~ 3.4).

The rest of the paper is organized as follows. In Section 2, we present the main result
and related remarks. In Section 3, we consider simple examples for general IFSs to discuss
about the “natural” assumption.

2 General iterated function systems

In this section, we give the main result and related remarks. In Subsection 2.1, we first
introduce some notions (trees, subtrees and branches) to define general IFSs which are
main objects in this paper. In Subsection 2.2, we next define general IFSs and present the
main result in this paper. In Subsection 2.3, we give some remarks on the main result.

2.1 Definition of trees

Let I be a non-empty and countable set endowed with the discrete topology. We set I* :=
{6} UU,en I", where ¢ is the empty word. We write w € I"™ (m € N) as wy -+ wp, (wy €
Lk=1,....,m)and w € IN as wjws - -+ (wy € I,k € N) respectively.

Definition 2.1. We say that T is a tree on I if T is a compact subset of IV, where we
endow IN with the product topology.

We set T, := P ,(T) (n € N) and T, := {¢} U ,,en Tn, where for m,n € N with
m <n,and w =wwy -+ € INUT (with n < 1), we set Py, (W) 1= wpm -+ -wy € "™
Similarly, we also set P, »)(w) = Wnwmt1+++ € IN for each m € N and w € IN. We
denote by |w| the length of w € T, UT, that is, for each w € T, U T, we set

0 ifw=¢
w:=q¢n ifweT, (neN).
oo ifweT

We next introduce the definition of subtrees of a tree.

Definition 2.2. Let T be a tree on I, and w € T,. The subtree T% of T conditioned by
w is defined by

Tv T if w=¢
P10 (M [ 7€T, Prg(r) =w } if weU,enTn



We endow T C IV with the induced topology.

We set T% := Py, (T) (n € N) and T% := {¢}UUJ,,cy T%. Note that T C IV satisfics
the definition of trees for each w € T,.

Before we conclude this subsection, we introduce some additional notions to state the
main result.

Definition 2.3. Let T be a tree on I, and w € Tx. The branch N(w) C I (of T) at w € T
is defined by N(w) := T¢%. In addition, for w € I* and w’ € I* U IY, ww' is defined by

, Wy Wiy wl €17 ifw e T”
ww' =
wl---w‘w|w’1w2 eV i e

Note that for each tree T and w € Ty, N(w) & Py, jw)(T) in general and we have
#N(w) < o0

2.2 General iterated function systems and the main result

Definition 2.4. Let I be a non-empty and countable set endowed with the discrete
topology and (X, p) a complete metric space. We say that a pair ({f;}ics, T) is a general
iterated function systems (for short, a general IFS) on (X, p) with the uniform contraction
constant ¢ € (0,1) if

(i) T is a tree on a set I and

(ii) fi: X — X (i € I) is a family of contractive mappings on X with the uniform
contraction constant ¢, that is, for all ¢ € [ and z,y € X,

p(fi(z), fi(y)) < c p(x,y).

Note that, for each i € I, there exists the unique fixed point z; of f; since X is complete
and f; is contractive on X.

Before we state the main result, we introduce the Hausdorff distance and present its
property. Let K(X) be the set of non-empty compact subsets in (X, p). For € > 0 and
AC X, weset Ac := {z € X | infaea p(a,z) < €}. Let pg be the Hausdorff distance on
K(X) defined by

pr(A,B) :=inf{e>0| ACB,BCA} (A BecK(X)).

Note that since (X, p) is complete, (K(X), px) is also complete (For example, see [7]).
We now give the main result in this paper.

Theorem 2.5. Let ({f;}icr, T) be a general IFS on a complete metric space (X, p) with
€ (0,1), and z; the unique fixed point of f; (i € I). Suppose that there exists z € X
such that

1
a = limsup \/ max p x,z;) < —. (2.1)
c

n—o0

Then, there exists the unique { Ly} er+ € K(X)T such that for each x € X and r € {r >
OlcVac<r<l1y,

U fi(Ly;) forall weT*, and Z (;)n - max pu({z}, Ly) <oo. (2.2)
— weln

1EN (w)



Remark 2.6. Fix a general IFS and assume that Z := {z; € X | i € I } is unbounded.
If the general IF'S satisfies the assumption (2.1) in Theorem 2.5 for some x € X, then it
satisfies the assumption for all x € X and the constant a > 0 in Theorem 2.5 does not
depend on = € X.

On the other hand, fix a general IFS and assume that Z is bounded. Then, even if the
general IFS satisfies the assumption for some x € X, the constant o > 0 unfortunately
depends on z € X. However, in this case, we can obtain the following stronger result than
Theorem 2.5: there exists the unique {L,}uer, € K(X)T such that

L,= U fi(Ly;) forall weT* and {L,}yer, is uniformly bounded.
€N (w)

The above property does not inculude « (and 7). Note that {L }yeT, in Theorem 2.5 is
not uniformly bounded in general (see Example 3.2).

Remark 2.7. In Theorem 2.5, we can regard the constant r as the convergence rate.
Indeed, under the assumption (2.1), we can deduce that for all for all A € £(X), w € T,,

U fwio"'ofw;(A)_)Lw (n—>oo)

w!'eTw

exponentially fast with the rate r, in sense of the Hausdorff distance.

2.3 Connections with the main result and related results

Remark 2.8. Under the assumption in Theorem 2.5, we can define a “natural” generaliza-
tion of the projection map (or the coding map) for general IFSs, without the boundedness
or compactness of the space (X, p). Indeed, under the assumption (2.1), we can obtain the
following: for fixed w = wjwsy - -+ € T, the sequence {f,, 00 fu, (A) nen (A € K(X)) of
compact subsets converges to a single set (it does not depend on A) as n tends to infinity
in sense of the Hausdorff distance. In particular, by the general theory of the Hausdorff
distance, if a sequence {f,, © -0 fu, (A)}nen is non-increasing (with respect to the in-
clusion order) for some A € K(X), then the intersection Ny,enfu, © - -0 fu, (A) is a single
set and is the limit point of the sequence {f., o -0 f,, (A)}men in sense of the Hausdorff
distance.

The above result leads us to a connection between Ly in Theorem 2.5 and the original
limit set. Indeed, under the assumption (2.1), we can deduce that L, is equal to the image
of the projection map for the general IFSs. Note that the unique limit set generated
by autonomous IFSs is equal to the image of the coding map. In Rempe-Gillen’s and
Urbaiiski’s paper [9], the projection map on compact metric space (X, p) is defined by the
intersection of non-increasing compact subsets { f,,, 0+ -0 f, (X)}men (W = wiwy - -+ ) and
the limit set is defined by the image of the projection map.

Remark 2.9. Theorem 2.5 gives a generalized result on the paper [2]. Indeed, under the
assumption (2.1), we deduce that

1
sup p(, 21) < sup p(fi (), ) < o0
iel (1 - C) iel

and it follows that o := limsup,,_, Vmaxiep[n (1) P2, %) <1 < 1/c. This is one of the

assumptions under which we define the limit set in the paper [2].



In addition, the family {L, },er, of limit sets for general IFSs ({ fi}ier, T) in Theorem
2.5 is compatible with some conditions in the definition of the Moran structure and the
compact subset L4 therefore equals to the Moran sets. Recall that, in the papers [8] and
[4], the limit set (the Moran set) is generated by the Moran structure.

3 Examples of General IFSs and the family of limit sets

In this section, we consider simple examples for general IFSs to check the necessity of the
assumption and the importance of the properties in the main result. In Examples 3.1 and
3.2, there is the unique original limit set with a “nice” property since the general IFS
satisfies the “natural” assumption. In Example 3.3, there are no limit sets with a “nice”
property since the general IFS does not satisfy the “natural” assumption. In Example 3.4,
there is the unique original limit set with a “nice” property, while the general IF'S does not
satisfy the “natural” assumption and “nice” property is indeed complicated. Note that
the examples in this section also appear in [6].

Henceforth, we set X := R (with the Euclidean norm |-|), [ := N, and T := {12---} C
IN. In this case, T is a single set, Tx = {1---n|n € N} and T := {(n+1)(n+2)--- }.
Note that, under this setting, we can reduce the general IFSs to the non-autonomous
iterated function systems.

Example 3.1. We set fp(z) := (z+ (1 —27"))/2 (zr € X) and consider a general IFSs
({fu}ner,T) on X with 1/2. In this case, 1 — 27" € X is the unique fixed point of f,, for
each n € I = N and ({fn}ner, T) satisfies the assumption (2.1) in Theorem 2.5 (indeed,
the set {1 —27"},en of the fixed points is bounded (see Remark 2.6), or we can directly
deduce that « <1< 2= (1/2)"! for each z € X).

Then, the non-autonomous iteration has the limit point. Indeed, by the induction with
respect to k € N, we deduce that

2 1 y—1 1 2 1

OO itk —1-2.= —

for each y € X and m, k € N. It follows that

_ 2 1

for each y € X and m € N. On the other hand, for y; € X, we set

_ _ . 2 2 1
Ym = friyo---ofi (1) = 2 1(y1—§>+1—§‘2—m and Ly = {ym} (m€N).

Then, fin(Ym+1) = Ym ( this is equivalent to fi,(L1...4n41)) = L1..m ) for all m € N and
{xm}meN = {ym}mEN if Y1 = 2/3‘

By these arguments, the sequence with the generalized self-similarity fp,(ym+1) =
Ym (m € N) is not unique, but {z,,}men (the case y; = 2/3) is the unique bounded
sequence with the generalized self-similarity.

Example 3.2. Weset f,(2) := (z+n)/2 (z € X) and consider a general IFSs ({ f, }ner, T)
on X with 1/2. In this case, n € X is the unique fixed point of f, for each n € I = N
and ({fn}ner, T) satisfies the assumption (2.1) in Theorem 2.5 (indeed, we deduce that
a=1<2=(1/2)"! for all z € X).



Then, the non-autonomous iteration has the limit point. Indeed, by the induction with
respect to k € N, we deduce that
m—2 k-1

y_
Jmo o frk1(y) =m+1+ ok Y

for each y € X and m, k € N. It follows that

T = M o0 e a(y) =m+1 and 2 = frn(@mi1)
k—o0

for all y € X and m € N. On the other hand, for y; € X, we set
Ym = fn_wl—l 0--:0 fl_l(yl) =2y —2)4+m+4+1 and Ly, = {ym} (meN).

Then, fm(Ym+1) = ym ( this is equivalent to fi,(Ly...om+1)) = L1 ) for all m € N and
{xm}meN = {ym}mEN if y1 = 2.

By these arguments, the sequence with the generalized self-similarity fp,(ym+1) =
Ym (m € N) is not unique, but {z, }men (the case y; = 2) is the unique sequence with the
generalized self-similarity that does not diverge exponentially fast with the rate 2. Note
that the set {z,, € X | m € N} is unbounded and this property does not hold if X is
bounded.

Example 3.3. We set f,(z) := (x +2")/2 (z € R) and consider a general IFSs X on
(R,|-|) with 1/2. In this case, 2" € X is the unique fixed point of f,, foreachn € I =N
and ({fn}ner, T) does not satisfy assumption (2.1) in Theorem 2.5 (indeed, we deduce
that o =2 £ (1/2)7! for all z € X).

Then, the non-autonomous iteration does not have a limit point. Indeed, by the
induction with respect to k € N, we deduce that

Y

:2k+2m—lk

Jmo o frmir-1(y)
for each y € X and m, k € N. It follows that f,, o---o f,,1x—1(y) does not converge as k
tends to infinity for all m € N and y € X. In particular, we can not obtain the conclusion
in Remarks 2.7 and 2.8 without the assumption in Theorem 2.5.
On the other hand, for y; € X and m € N, we set

Ym = n_»Ll_l -0 fl_l(yl) = 2m—1(y1 —m+ 1) and Lj.p, = {ym}

Then, fimt1(Ym+1) = Ym ( this is equivalent to fii1(L1...4ng1)) = L1..m ) for all m € N.
By these arguments, for any y; € X, the sequence {y,}men with the generalized self-
similarity fi, (Ym+1) = ym (m € N) diverges exponentially fast with the rate 2.

Finally, we also give an example that cannot apply the main theorem but is important
when we understand the limit sets generated by general TFSs.

Example 3.4. We set 8 > 1 and f,(z) := (z + 2"/n’*1)/2 (z € X), and consider a
general IFSs ({fn}ner, T) on X with 1/2. In this case, 2"/nSt! € X is the unique fixed
point of f, for each n € I = N and ({fn}ner, T) does not satisfy the assumption (2.1) in
Theorem 2.5 (indeed, we deduce that a =2 « (1/2)7! for all z € X).

However, the non-autonomous iteration has the limit point. Indeed, by the induction
with respect to k € N, we deduce that

T
I

1

Y -
(m + 1)+

— 2k + 2m—1

l

Jmo---0 frk-1(y)

i
o



for each y € X and m,k € N. Since > ;°, I=(%+1) < oo, it follows that

T o= M fro-0 fropp1(y) =277 1P and zy, = frn(man)
k—oo

l=m

for all y € X and m € N. On the other hand, for y; € X, we set

m—1
Y = fly oo f () = 2! (yl - l‘”*”) and  Li.m = {yn} (m€N).
=1

Then, fin(Ym+1) = Ym ( this is equivalent to fi,(L1...4n41)) = L1..m ) for all m € N and

{fEm}mGN = {ym}mGN if 1= Z?il l_(ﬁ-i_l)‘

By these arguments, the sequence with the generalized self-similarity fi,(ym+1) =
Ym (m € N) is not unique, but {@,;,}men (the case y1 = >7°, 173+1)) is the unique
sequence with the following property:

m 0 if > 2
lim “™ = lim - (-) Zl (B+1) — 1 c=z4
m—oo ™M m—oo 2 oo if e<?2

Note that the sequence {z,}men in Example 3.2 also holds the above property and the
sequence {Z, }men in Example 3.3 does not hold the above property.

We next prove that we cannot obtain the conclusion in Remark 2.7. To this end, let

€ (0,1), m € Nand y € X. Assume that there exists a constant C(m,y) > 0 such that

‘xm — fmo---o fm+k—1(y)| < ém(y) -k
for each k € N. Note that
i 1 2m 1 _
ok VR = 2k * Z zﬁ+1 = |#m = fm o0 fmin-a(y)]
l=m-+k

Thus, we obtain that 1/(m + k)#*! < max{|y|, Cpn(y)} - max{1/2,7}*, which deduce the
contradiction. Therefore, we cannot obtain the conclusion in Remark 2.7.
In addition, we also deduce that for all for all y € X, m € N,

fmo o fmpr-1(y) = om  (k— 00)
with with a polynomial rate k=% of convergence. To this end, note that
y o~ 1
’xm — fmo---o fm-val(y)‘ = ok +2m! Z 1B+1°
l=m+k

Since 1/1°*1 < 1/(1 —1)# — 1P for each | € N with [ > 2, we have

fon = fm @000 fsaa )] < g+ 277 Z (l_l - %)

y 2m—1 1
-2 4L = @@ < .
ot mrro1p SOy 3
for all y € X and m, k € N, where C(m,y) is the constant which depends on m € N and
y € X (and which does not depend on k£ € N).
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