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Abstract: In this note, we give simple, new type and best possible
integral inequalities for Sobolev spaces by using the theory of reproducing
kernels. Further, we refer to Hardy-type inequalities by elementary method
with some general and valuable coefficients for the first order Sobolev Hilbert
spaces. Furthermore, up to date information is introduced simply, that is,
A. Yamada and Q. Guan’s recent results.
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1 Introduction and restriction of reproducing
kernel Hilbert spaces

In order to show the basic background of this note, we recall the restriction
and extension of reproducing kernel Hilbert spaces.

We consider a positive definite quadratic form function (reproducing ker-
nel) K : Ex E — C. We consider restriction of K to Fy x Ey, where Fjy is a
subset of E. Of course, the restriction is again a positive definite quadratic
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form function on the subset Fy x Eg. We shall consider the relation between
the two reproducing kernel Hilbert spaces.

Theorem A. ([19], pages 78-80). Let Fy be a subset of E. Then the
Hilbert space that K|Ey X Ey : Ey X Ey — C defines is given by:

Hygox o (Eo) = {f € F(Lh) : f= f|Eg for some f € Hg(E)}.  (1.1)
Furthermore, the norm is expressed in terms of the one of Hy(F):

HfHHK\onEO(EO) = IIllIl{HfHHK(E) : f € HK(E)a [ = .ﬂEO} (12)

In Theorem A, note that the inequality, for any function f € Hg(F)

1 W ety e B0y < 1 e ) (1.3)

that is, the restriction map is a bounded linear operator.
In addition, for the minimum extension formula we have the general for-
mula in Theorem A,

f(p) = <f|EU()7 K('vp))HK\onEO(EO)’

for the minimum norm extension f of f|FEy. See the proof of Proposition 2.5
in [19] (pages 79-80), in particular, (2.48).

With these strong motivations, we gave the realization of restricted re-
producing kernels in [20] for some Sobolev Hilbert spaces.

The space Hg(R) is comprising of absolutely continuous functions f on
R with the norm

17l rs ) = \//R(!f(ﬂc)!2 + /(@) 2)d. (1.4)

The Hilbert space Hg(R) admits the reproducing kernel (Green function)

Ko = 5 [ g elite - 0)8ds = 3677 (ayeR). (15)

o7

Its restriction to the closed interval [a, b] is the reproducing kernel Hilbert
space Hgla,b] = W12[a, b] as a set of functions, and the norm is given by

1l stay = \/(/ (f (@) + 11" (2)[?) dw) Hf@P+ )P (16)
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([19], pages 10-16).
In particular, we obtain the best possible inequality:

/R(If(fb’)l2+ |f' () *)da > </ (If(@)]* + If'(l’)IQ)d:r> +f@P +[fD)
(1.7)

We obtained several realizations of restricted reproducing kernel Hilbert
spaces as in (1.6), however, they are, in general, involved. See [17], [19].
The formula (1.6) is a simple result, however, the realization of the restricted
reproducing kernel spaces is, in general, complicated in this sense.

For the Sobolev Hilbert space W22(R) defined to be the completion of
C2°(R) with respect to the norm:

[/ lw22m®) = \/Hf”HLZ(R)2 + 2| 'l 2@)® + 1 | 2 w)?,

we have the reproducing kernel

1
e U1+ s —t]) (s,t €R)

G(s,t) = )

([19], pages 21-22).

For simplicity, we shall consider functions in real valued functions.

We looked the reproducing kernel Hilbert space Wg([a, b)), (a < b) admit-
ting the restricted reproducing kernel G(s,t) to the interval [a, b]:

1 vy = 17 Wozqamy + 20 172y + 1F 1220y (1.8)
+2(f(a)? = f(a)['(a) + ['(a)®) + 2(f (b)* = [(b) ' (D) + J'(b)?).
Let

> cos(su) cos(tu) s
K(s,t) = du = —
(,1) /0 u?+1 YT

(exp(—|s —t|) + exp(—s —t)) (1.9)

for s,t > 0. Then Hg(0,00) = W?(0,00) as a set of functions and the norm
is given by:

I/l 001 = \/ 2 [Turwe 1) (1.10)
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([19], pages 12-13). From the restriction of the kernel K(s,t) to [a, b],a > 0,
we have the realization of the norm

21— exp(—2a)

;1+exp(—2a)‘f(a)’2 A

1 W1y =

2 [P + f@P) dus 210

Let
k()= [ g = T (exp(cls — ) — exp(-s - 1)
for s,t > 0.
Then we have
1110, 50) = {F € AC(0.50) : (0) = 0} (112)

as a sct of functions and the norm is given by

I/ 000 = \/ = [P+ 1) da (113)

([19], pages 13-14). For the restriction of the kernel K(s,t) to [a,b],a > 0,
we have the realization of the norm

21+ exp(—2a)

1 oot = =77 oxp(=20) |f(a)f? (1.14)
b
2 [ @ + @) dus 2170
Let
K(s,t) = min(s,t) (s,t>0). (1.15)
Then we have
H(0,00) = {f € W0, ) : %f(g) = o} (1.16)



as a set of functions and the norm is given by

1/ 0,000 = \//0 | () |? du (1.17)

([19], pages 14-15). For the restriction of the kernel K (s,t) to [a,b],a > 0,
we have the realization of the norm

b
1 Braton = g @F + [ 170 du (118)

Furthermore, we recall the following two reproducing kernel Hilbert spaces,
see pages 104-105 in [19]:

Let Hg[0, c0) be the set of all absolutely continuous functions f on (0, c0)
such that f and its derivative f’ satisfy

liﬁ)l f(z) =0 and / |f(z)]2e” d < oo.
r 0

Then, Hkl0,00) is a reproducing kernel Hilbert space admitting the repro-
ducing kernel kernel K (z,y) = 1 — e~ ™n@y),

Likewise let H g (—o00,0] be the set of all absolutely continuous functions
f on (—o0,0) such that f and its derivative f’ satisfy

0

lg%lfCL‘) =0 and / |f'(z)[Pe " dr < oo.

—00

Then Hp(—00,0] is also a reproducing kernel Hilbert space admitting the
reproducing kernel K (z,y) = 1 — emax@v),

Then, we obtain the similar results for the restriction reproducing kernel
Hilbert spaces as follows.

For any interval [a,b],a > 0

112 - f(a)Q b /() 2 x 7,
iaton = 7= + | Ve ar (1.19)

For any interval [a, b],b < 0,

2 b
it = 7o+ [\ d (1.20)
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The function
min(z, y)

ko(x,y) = log ,a>0

is the reproducing kernel for the one dimensional Sobolev space with finite

norms -
/ [ (x)?xdx
a

satisfying

f(a) =0,
([16]). We can sece that the restriction of the kernel to [b,c],0 < a < b < ¢
admits the norm square

f)? / 2
+ x)“xdx
ioso/a) *Jy T
and so we obtain the norm inequality
(b

)2 c . ) 00 / )
log(b/a) /b fl@)zde < / f'(@)*xde. (1.21)

We have many type Sobolev Hilbert spaces. For example,
for w? =+2? — a? > 0, the kernel

exp(—als — 1))

K(s,t) =

a
1) + Lsin(w]s — ¢t
To? cos(w|s — t]) + " sin(wl|s — t])

is the reproducing kernel for the Sobolev Hilbert space admitting the norm

|[ul]? = 4ay*u(a)? + 4o’ (a)?

+ / (u" (1) + 20%0 () + 72u(t))’ dt

(E. Parzen, [12]).
See also [1] and the recent paper A. Yamada ([21]).



2 Results

From the above results, we obtain the simple best possible integral inequali-
ties

Theorem 2.1.
For any function f € Hgla,bl,a > 0 in (1.18), we have

[ 1r@P s = 510 - P (21)
For any function [ € Hgla,b] in (1.6), we have
[P+ @P) @ 2 P @) . @2
For any function f € Hgla,bl,a >0 in (1.11) or in (1.18), we have
[ 1@+ i@ 23)
> (P 0R - TR @) 1 @P - P

For any function [ € Hgla,b] in (1.8), we have

[ (P 7@ 1) ds 2
>+ (0 — 0L 0) +1'07) — 20— F0) @)+ 10)).

For any interval |a,b],a > 0

2
/ |f(z)]2e” dv > J;E;)( e (2.5)
For any interval [a,b],b < 0,
b 2
[1rerears 1O 26)

For any interval [b,c],0 < a < b < ¢, we obtain inequality

f(c)? . )2 d
log(c/a) ~ Tog(b/a) S/,, f(@) de.
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For example, for (2.2) in (1.6), for a < b < ¢, by considering the extension
of Hg[a,b] to Hyla, c|

HszQLIK[a,c] > ||fH12LIK[b,c]>

that is, .
[ US@F +17@P) do + 1@ + f(ef

> /b (If@)° + [f(2)]*) dz + f(b)* + f(o)*

and the desired result in + sign.
Meanwhile, with ¢ < a < b from

1 e = 1 Wt ce.als

we have the desired result with — sign.

Other results may be given similarly.

We obtained the new type fundamental norm inequalities for Sobolev
Hilbert spaces, and we can apply the inequalities in this way, for example

SO < L@+ 17 @P

3 Elementary norm inequalities

We shall consider elementary norm inequalities in connection with the above
results. For this purpose we consider the integral

1B = [ (A@)@) + B (@) do (3.)

Here, we can consider continuously differentiable functions A(x) and B(z)
on [a, b] and for the Sobolev space Hgla, b] of the first order. Then, by partial
integral formula, we have

1/ rga,c. (3.2)



~ [Ca@lf@Pds+ [ Bl @)
+ [A(2) B(x) f2(x)]"

Here,
a(r) = A*(z) — A'(z)B(x) — A(x)B' ().

3.1 A(x) = A constant case

In this case, with A, Xp: constants and a(x) > 0, by setting

Bx(x) =2A — %/j a(é)dé + Xp,

we have the desired inequality

/ ()| f ()P + / By(2)?| () ?da
> A [Bx(a)f*(a) — Bx(b)f*(b)] -

3.1.1 A: constant and a(z) =0 case

Then, with a constant Xz we have
B(l’) = Ax + XB,
and we have the inequality
b
[ s+ X0 @)

> A [(Aa+ Xp)f2(a) — (Ab+ Xp) (b)] .



Example: For a(z) =sinz with a =0,b=r
Then, for the function

Bx(z) = xA — %(cosx - 1)+ X5,

we have the inequality
[ @@ e+ BP0
0
> A[Xpf*(0) = Bx(m)f*(m)] .

3.2 B(xz) = B constant case

In this case we have, for a(x) > 0, B # 0 and constant X4, by

we have the inequality

[ ewirpa s [ @

> B [Ax(a)f*(a) = Ax(b)f*()] .

3.2.1 B: constant and «a(x) =0 case

Then, we have
1

(1/B)x + X4’

with a constant X4 and we have the inequality

b
[ 17 @pas

[Ax(a)f*(a) = Ax(0)S*(b)] -

Ax(l') = —

10



3.3 A(x), B(x) constants case A, B
Then, a(z) = A% and we have the inequality

/ A (@) P+ / B\ () P

a a

> AB (f*(a) = f*())

4 Hardy type’s inequalities

The very famous and important Hardy’s inequalities are stated typically in
the following way:

Hardy’s inequalities.

For 0 < b < oo and for smooth functions f, vanishing around the origin

1 b b
1@< [P
4 Jo 0

Furthermore, for p(s) > 0 and p'(s) <0 and for —co < a < 1

= / S| f(3)Po(s)ds < / S ($)Pos)ds.

See, for example, [2], Section 5.3 with many applications to partial dif-
ferential operators. It will be very interesting that one book ([11, 10]) even
was published with Hardy’s inequalities.

From our method (3.1) we can obtain a general inequality with some
natural and general weights of Hardy’ type

Theorem 3.1. For any function a(x) < 0 on [a,b], for a non-vanishing
and continuously differentiable function A(z) on [a,b] and a constant C such
that the integral

B(r) % b “(A2(€) — af))de
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exists and the function B(x) is integrable, we obtain the Hardy type inequality
b b
| Balr@ie: [ Ca@li@Pd

+ [A2)B(x) f4(2)]] .

Meanwhile, for any continuously differentiable function B(x) satisfying
that for a continuously differentiable function A(x)

a(z) = A%(x) — (A(z) B(z)) <0,
we have the above Hardy’s type inequality.

Corollary 3.1. In Section 3.1, for a function a(x) satisfying a(x) <0,
we obtain the Hardy type inequality

/ By (0% (2) Pda

> / (—a(@))|f(2)]dz + A [Bx(a)f*(a) — Bx(0)/*(b)] |
for the function

Bx(z) = xA — %/j a(§)de + Xp.

Corollary 3.2. In Section 3.1, for a constant A and for any function
B(z) satisfying on |a, b]

0# A < min B'(z)

for the function
alr) = A* — AB'(z) <0,

we obtain the Hardy type inequality
b
JROORE

2/(—a(x))lf($)|2d$+4[B(a)fQ(a)—B(b)fQ(b)}-
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Example: For a(z) = —sinz with a =0,b=r
Then, for the function

Bx(z) = xA — %(1 —cosz) + Xp,

we have the inequality

By (2)|f'(x)*dx

0

> /OW |f(z)]?sinzdx + A [Xpf*(0) — Bx(m) f*(7)] .

Example: For a(z) = —z° s > —1 with a =0,b >
Oand A=1,C =0

Then, we have the inequality
1 b
o [ @R
b 1
> [i@krar |

For any real number s (# —1), for 0 < a < b we have the inequality

x5 s 2
S+ 1 / |f +1 +1) dZI?

> / |f () Patda + {:11 (z°1 —at1) fQ(x)}

b

z*+ f2($)] .

0

b

a

For s = —1 we have

/0 @ (%) ds
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b
0

> [P + ot ]

Example: For a(x) = —logx with a =1 < b and
A=1,C=0

Then, we have the inequality
/|f *(zlogx — x4+ 1)%dx

2/1 |f(z)? log xdx + [(zlogx — x + 1)f2(x)}i.

Example: For a(x) = —logz with 0 < a,b < 1
and A=1,C=0

Then, we have the inequality
/ | ()2 (z(logz — 1) — a(loga — 1))* dx

/ |f(z)(—logz)dx + [(z(logz — 1) — a(loga — 1)) fQ(w)]Z

5 For the second order Sobolev spaces

We consider the integral

b
T / (Af(@) + Bf(2) + CL (@) de.  (5.1)
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Here, we can consider constants A, B, C' and for the Sobolev space Hgla, b]
of the second order. Then, by partial integral formula, we have

1 s 52)
b
~ [ (@Rl + 8@ @ + CU @) do

+ [ABf* (&) + BCJ'(2)? + 2CAf (z) f'(2)]"

Here,
B =B%*—-2AC.

Therefore, for 5(z) > 0, we have the inequality

/ (A1 ()P + B ()2 + C2| " () ) i

> [ABf*(a) + BCf'(a)* + 2CAf(a) ['(a)]
— [AB[?(b) + BC['(b)> +2CA[(b) ['(b)] -

6 Up-to-date information

6.1 In connection with Yamada’s recent results

For the simple statements, we assume the basic results on some general in-
tegral transforms on the framework of Hilbert spaces using the theory of
reproducing kernels, Section 2.5 in [19] and the recent results by A. Yamada
[22].

Let ‘H be a Hilbert space with the inner product (-,-)3. Leth: E — H be
a fixed h valued mapping on F. Then, we shall consider the linear mapping
L from f € H into F(FE) defined by the following:

LE(p) = (£.h(p))n- (6.1)

The key to consider this fundamental linear mapping is to form the two
variables complex-valued function; that is, a positive definite quadratic form
function:

K(p,q) = (h(q),h(p))n (6.2)
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defined on ' x E. We denote by R(L) the linear function space of comprising
all complex-valued functions of the images of h by L defined on E. In the
image space R(L), we introduce the norm by

I lrey = inf{[[fll : £ €M, J=LE}, (6.3)

then the image space forms a Hilbert space and we obtain the fundamental
theorem:

Theorem 2.37 ([19], 137). The image space {Lf}eey by (6.1) of H is
characterized as the reproducing kernel Hilbert space Hy(FE) determined by
K in (6.2) and we have the inequality

LA bty iy < [IElle (£ € H). (6.4)

Furthermore, for any f € Hx(F), there exists a uniquely determined vector
f* € H satisfying:

f=E00)n on E - and  ||[]laem = [1E - (6.5)

In this general situation, we examine the basic properties of the lincar
mapping (6.1), in particular, its inversion formula. However, its situation
is very involved. For the inversion formula, A. Yamada [22], in particular,
examined the linear mapping with the assumption that # is itself a reproduc-
ing kernel Hilbert space and he obtained very beautiful results. Furthermore,
he examined the linear mapping (6.1) itself from the viewpoint of delicate
situations.

However, many linear mappings (6.1) with physical meanings are not
for any reproducing kernel Hilbert space as an input space. However, we
will be interested in the linear mapping (6.1) with some smooth function
spaces. Here we note that there exists a general method for this problem by
considering input function spaces as a reproducing kernel Hilbert space. Note
that any reproducing kernel Hilbert space may be considered as the image
of a Hilbert space H, by considering a decomposition (6.2) of a reproducing
kernel in some way conversely.

We shall show the details with a typical example.

As a typical case, we consider the simple heat equation

ug(x,t) = uge(x,t) on RxT, (T ={t>0}) (6.6)
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satisfying the initial condition
up(-,0)=F € L*(R) on R (6.7)

Using the Fourier transform, we obtain a representation of the solution
U/F(‘Lt)
1

\/R/RF(Q exp (—(r;—f)Q) d¢ (6.8)

at least in the formal sense. Apart from a classical and educative arguments
about the properties of this transform, for any fixed ¢ > 0, we examine the
integral transform F' — wup and we shall characterize the image function
up(z,t).

Let us write

up(z,t) =

1 x?
k(x;t) = exp | —— r€R, t>0). 6.9
0= e (-5 ) ) (6.9)
We define the kernel
1 2 ? xx
K "= [ k(x =&k — & t)dE = -z 4
w00 = [ - g0k - i = 5o (5 -5+ )

(6.10)

according to (6.2).
The typical results of Section 2.5.3, in [19] are the following theorems and
their corollary, which identify the RKHS Hg (R):

Theorem 2.40: Lett > 0. A function f takes the form up(-,t) for some
F e LA(R) if and only if [ admits analytic extension [ to C and satisfies

. a2
\/\/%/C|f(1:+iy)|26xp (2—‘;) dzxdy < 0. (6.11)

In this case, f € Hx(R), where K is given by (6.10), and the norm is given

by:
- (o + iy)|? ) ded
[ e w) = o C!f(fEJr%y)\ exp | —2; | dzdy.

Theorem 2.41. Let t > 0. In the integral transform F — up(-,t)
of L*(R) functions F, the images up(-,t) extend analytically onto C to a
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function, which we still write up(-,t). Furthermore, we have the isometrical
identities

1 2 > (21)I
Jir@ras = —= [[ jur ok e (—g—t) d:rdy=z<]illw< Dl

§=0
(6.12)
for any fived t > 0.

Corollary 2.7. If a C*-function f : R™ — C has a finite integral on the
most right-hand side in (6.12), then f is extended analytically onto C and

o0

Z 2;; /\83 )[2dzx \/_ /\f (z + iy)|* exp (—2—) dxdy. (6.13)
7=0

Now, as a simple smooth function space, we shall consider a reproducing
kernel Hilbert space. The space Hg(R) is comprising of absolutely continuous
functions [ on R with the norm

17l sy = \//R(If(l’)l2 + 1/ (@)]?)de. (6.14)

The Hilbert space Hg(R) admits the reproducing kernel (Green function)

K(r.y) = o / %gexpu( Ve = sty €R). (615)

The representation (6.15) means that the functions f(x) of Hg(R) are
represented in the form

1 1 )
@) = 5= [ g enline P(e)ae (6.16)
with the functions F'(§) satisfying
1 1 ,

and the norm is represented by

1 1
1750 = \/ > [ e
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By combining two integral transforms (6.8) and (6.15), we obtain the
integral transform of the Sobolev space Hg(R)

(&2
(1) = % /]R F(e) expi&av%ét)df (6.18)

for the space satisfying (6.16). Then, by the fundamental theorem (2.37) we
obtain the corresponding theorem to Theorem (2.41):

Theorem 6.1. Let t > 0. In the integral transform ' — up(-,t) of
the Sobolev space Hg(R) functions F', the images up(-,t) extend analytically
onto C to a function, which we still write up(-,t). Furthermore, we have the

isometrical identities
/ I (6)|2de
R

= [ (et 0P+ et e (-1

(2t)7 0
=3 (Il 5 e )

for any fixed t > 0.

Meanwhile, in the Yamada’s situation, we will consider the integral trans-

o [ (Foma-cn+ gre g -co)

for the Sobolev space Hg(R) and it does not have a physical sense.

6.2 Q, Guan’s recent extensions

For two functions ¢ and ¢ of Hy(D) for any regular domain D, the ana-
lytic Hardy 2 space (Szegd space), we obtain the generalized isoperimetric
inequality

[ wewepaa < 5 [ el [ P, 619

and so, we obtain the bounded linear operator from the Szego space to the
Bergman space
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/ (=) Pdzdy < (iD)/ F(2)Pldz], (6.20)

for the length {(0D) of the boundary 9D([13]).

Note that the inequality (6.20) is a curious one in the sense that the
Bergman norm is for analytic differentials, but the Szegé norm for half order
differentials. In connection with this inequality, we recall the interesting best
possible norm inequality:

)2 L[ 1f'(z)dz]?
/ |f'(2)*dzdy < /D m (6.21)

= o [ rer(5E0) s,

that means the relation between the Bergman norms and the weighted Szego
norm for (exact) differentials. Here, for the conjugate harmonic function
G*(z,1) of the Green function G(z,t) of D, W(z,t) = G(z,t) +iG*(z,t), and
idW (z,t) is a single-valued meromorphic differential and positive along the
boundary 9D and 0/dv, is the inner normal derivative with respect to D.
0G(z,t)/0v, is a positive continuous function on 9D.

This inequality is not so simple to derive and for its proof we must exam-
ine deeply the relations among the Hardy reproducing kernel, its conjugate
kernel and the Bergman kernel ([14]).

The conjugate Hardy space which is given by the left hand side of (6.3)
was surprisingly generalized as the Ohsawa-Saitoh-Hardy space on
n-dimensional complex manifolds by Q. Guan and Z. Yuan ([8]) through
([5, 6, 7]) with many concrete and deep results. Furthermore, surprisingly
enough, further extensions were given recently in [9].
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