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abstract

The rigged Hilbert space (RHS) treatment for the Dirac’s bra-ket formalism in a non-Hermitian
system with a positive-definite metric is reviewed. We propose an RHS related to the positive-
definite metric induced from a positive operator 7, called n-RHS. The nuclear spectral theorem
for the n-RHS exhibits spectral expansions of the bra and kets by the generalized eigenvectors
of an n-quasi Hermitian operator. We establish a complete bi-orthogonal system that endows
the transformation theory between the Hermitian and non-Hermitian systems using the spectral
expansions. The n-quasi Hermitian operator can be extended to the general operator on the

bra-ket space while preserving its symmetric structure.

1 Introduction

A rigged Hilbert space (RHS), also called a Gel'fand’s triplet, was introduced mathematically
to correlating the distribution theory with the Hilbert space theory, by I. M. Gel'fand and his
collaborators[1, 2|. This space has been utilized to formalize the Dirac’s bra-ket notations in
quantum mechanics because the mathematical formalism of them is considered insufficient within
the context of von Neumann’s Hilbert space theory[3]-[26]. Nowadays, the RHS is considered
as an underlying space for describing quantum mechanics using the bra-ket notation. Actually,
accurate elegant formulations for quantum mechanics based on the RHS are proposed for sev-
eral systems, e.g., harmonic oscillator[9], resonance state (Gamow vectors)[10], and scattering
problem[16]. Note that the RHS has also been applied to the fundamental study of complex
eigenvalues of the operators treated in the context of statistical physics [11]-[14][21, 22].
The RHS is given the following triplet of topological vector space[17],

dCHCI, DX, (1)

where H = (H, (-, -)3) is a complex Hilbert space, ® is a dense linear subspace of H equipping

a topology 7¢ such that (®,7g) is a nuclear space. ®' and ®* are sets of continuous linear and



anti-linear functionals on (®, 79 ), namely, dual and anti-dual spaces of (®, 79 ), respectively. The
inner product (-,-}¢ on ® becomes separately continuous on (®,7), where (¢, V)p = (d, V)
for ¢,1p € ®. (Note that by the Rieszs’ familiar theorem, H can be identified with its dual
H', H = H'; then, the relation H' C @' holds.) In the RHS (1), the bra-ket vectors can
be constructed using the following procedure[17] (see also Sec. 2). Given a quantum system,
observables of the system that are described as Hermitian (self-adjoint) operators in H realizes
the space @, and for the RHS, the bra and ket vectors are defined as the elements of ®’ and ®*,
respectively. Then, the nuclear spectral theorem of the RHS provides the eigenequations of the
bra and ket vectors individually and the spectral expansions of the bra and ket vectors of the
observables. In the sense, the Dirac’s bra-ket formalism is obtained completely.

Recently, the mathematical treatment for non-Hermitian quantum systems, such as, a parity-
time (PT)-symmetrical system, has been developed based on the RHS[19, 20, 23, 25, 26]. In
a PT-symmetrical system, a non-Hermitian Hamiltonian H is assumed to satisfy the following
symmetry:

H =nHy ', (2)
where 7 is given as the composition operator of the parity and time transformations[27, 28].
When the left-hand side of (2) is the adjoint HT instead of H i.e., H' = nHn~! and the operator
7 is assumed to be a positive operator, such an operator H is referred to as an n-quasi Hermitian,
and the operator describes the system with a positive definite-metric[29, 30, 31].

In this short article, we review the study of the RHS formalizing the Dirac’s bra-ket notation
for a non-Hermitian system with a positive definite metric[26] after introducing the bra-ket

formalism mathematically constructed on the basis of the RHS.

2 Definitions, Statements, and Bra-ket formalism
2.1 Definitions and Statements

2-A. A countable Hilbert space (CHS) is a topological vector space constructed by the following
steps.

(i) Let a vector space ® and let a system of inner products, {(-,"),, ; n =1,2,---}, such
that the induced norms || - ||, = /(,)n satisfy the inequalities || - ||, < || - ||n+1,
n=1,2,---, and each (®, (-,-),) is a pre-Hilbert space.

(ii) Induce a locally convex space (P, 1) from the family of the obtained norms {|| - ||, }.
(iii) The completion of (®,7g) is called a CHS.
2-B. A compact operator 1" on a Hilbert space H1 into a Hilbert space Hs is said to be nuclear

provided that the relation » 2 ; A, < +o00 holds, where each A, is the eigenvalue of the

operator 1" obtained in the polar decomposition of T



2-C.

2-D.

2-E.

In the construction of CHS (2-A.), let ®,, be the completion of the norm space (@, || - ||)
(n = 1,2,--+). Whenever m < n, the identity map ¢ = ¢" — ¢ = ¢"™ on ® can be
extended to the continuous linear map 71 : &, — ®,,. We call T (m < n) a canonical

mapping.

A CHS (®,79) is called a nuclear space provided that for any m there exists an n such
that the canonical mapping 17 : ®, — ®,, is a nuclear operator. In other words, 7 has

the form

T??w¢ = Z /\n<¢7 (Pk>n¢)k (3)

k=1
satisfying 7 | A, < 400, where {¢;} and {¢;} are orthonormal systems of ®,, and ®,,,
respectively.

(For a more general definition of nuclear space, see [32]).

Let A be a locally compact separable space and p a positive measure on A. For each A € A,
set a (separable) Hilbert space (H (), (-,-)x). A vector field x is an element of TIxcp H(N).
A countable family (z;) of vector fields is called a fundamental family if (i) all functions,
A3 X (2;(N), 2;(N)) € C, are measurable for all 7, j and (ii) (z;(\)) spans H(X) for each
A. A vector field x is measurable if all the functions, A — (x(A),z;(A\))x (1 =1,2,--+), are
measurable, where (2;) is a fundamental family. Let M = {z € IIyep H(\), 2 is measurable

+. The direct integral

g/HMMu (4)
A

of Hilbert spaces H()) is the space of equivalence classes of measurable vector fields z € M

satisfying

/ww%u<m. (5)
A

Here, two fields are equivalent if they are equal p-almost everywhere on A. If the direct

integral equips the inner product,

@E%:A@www (6)

where (x,7) : A — C,\ — (x(\),y(\))x (||z]|?>= (z,x)) is measurable if x € M, then it is
a Hilbert space.

. Statement.(Maurins’ Nuclear Spectral Theorem)|[2] Let (H,(-,-)3) be a Hilbert

space, (P, 79) a nuclear space such that (i) ® is a dense subspace of (H,{-,-)) and (ii) the
identity i @ (P,790) — (H, (-, )n), ¢ — ¢ is the continuous embedding. Then, Fourier
transformation F : H — H is given by the formulae;

~

De(N) = (BN, frA))x = (FO)u(\) = ex(N)(9) (k= 1,2,...,dimH(N)) (7)



2-H.

2.2

where e () € ¥/, {fk()\)}kzl,...,dim’}:[(/\) is an orthonormal base of H(N), and H = I H(N)dp
is the direct integral of the family of (sebarable) Hilbert spaces {H(X)}ren indexed by the
locally compact space A with the Borel measure p. Moreover, suppose that a normal oper-
ator A is continuous and A® C ®. Then, the spaces 7:1(/\) are common eigenspace of A,

which is diagonolized by the transformation F'.

By using the Fourier transformation F : H — H that is isometric isomorphic obtained the

above statement, for ¢,y € ®, we have

(6.0 = /A (B, DO adp (8)
By H(N) 3 (\) = S OG0, fuWafi(V),
A A dim# ()
BOLEM = 3 EN@)er(N(®) (9)
k=1

is satisfied. Assuming dim#(\) = 1 for any A, we have

= | V@) @i

Therefore, Maurins’ Nuclear Spectral Theorem can be represented by the following simple
statement.

Statement. Let ® C H C ' be a RHS, A: D(A) — H, self-adjoint with a dense domain
D(A). In addition, assume that A is continuous on ® and A® C ®. Then, A has the
set {e(&)} of the generalized eigenvectors in @' corresponding to generalized eigenvalues &,
where & goes through the spectra Sp(A) of A. Furthermore, for any p,v € ®, we obtain

the relations

T /S @O

(0 AY)y = /S L § AT PE)O) (10)

where v(§) is a Borel measure on Sp(A).

Here, ® > F : & — C is called a generalized eigenvector of A corresponding to the
eigenvalue &, if F' satisfies F'(A¢) = EF(¢) for every ¢ € ®.

Bra-ket formalism

The main features of Dirac’s bra-ket formalism that are handled by the RHS are listed as follows.

To each point of the spectrum of an observable (self-adjoint operator) A, there correspond

left and right eigenvectors, denoted by (a| and |a), satisfying
(a|] A=a{a] and Ala) =ala), (11)

respectively.



e These (eigen) bra and kets form complete bases; any bra (¢| and ket |¢) can be expanded

as

(ol = 3 (plan) (an] + / (ol (al dis(ar),

n

(Ael = 3 o (lan) (anl + fa(pla) (ol du(o), (12
and

0y =3 (anlg) lan) + /<a|«p> la) dpu(a).

n

[Ap) =D an (anle) lan) + /a (alg) |a) dp(a). (13)

(an and a correspond to the discrete and continuous eigenvalues).

e They are normalized with respect to the following relations:
(an|am) = Onm, <a‘a’> =6(a—d), (14)
where 0, is the Kronecker delta and §(a — @) is the Dirac delta function.

The RHS formulation of the above features is summarized as follows. First we construct

bra-ket vectors. Set a RHS of the type (1),
dCHCIP, D, (15)

For ¢ € @, define a map |p),, : ® — C by [p)y (¢¥) = (¥, p)3 where ¢p € ®. This map |p),, is

called a ket vector of . Similarly, a bra vector of ¢ is the map (p|,, : ® — C of the complex

conjugate of [0}y : (ply (¥) = lo) (¥) = (lp)y (¥))* = (. ¥)n. Cleatly, (gl € @' and
|£)4, € ®* hold.

For the representations in (10), as {e(&)}(C ®') are the generalized eigenvectors of A, they
satisfy

e(§)(Ag) = &e(§)(d) (¢ € D). (16)
Here, we adopt the following notations:
e(§) = (€l e(€)" = [E)y, e(€)(@) = (Elp)yy, (€)™ () = (0l§)y (p € D),

and set the extension A on ® U ®* where A(f)(¢) = f(A¢) (f € D' UD*, ¢ € ) (see also Sec.
3). Then, from (16) we derive

Al = €€l A&y =¢16) (17)
They show the eigen equations with respect to the bra and kets, individually. Moreover, the
relations in (10) convert to

(W, P = /S o 1 () O, (0, A = /

Sp(A

)5(1/)!@% (€lp)y dv(£)- (18)



Therefore, the spectral expansions can be obtained as follows.

Statement. The spectral expansions for the bra (p|,, and ket |p),, in @ and &* by the gener-
alized eigenvectors {(£|,,} and {|§),,} of A represent, for ¢ € @,

(el = / (N (€l dv(E), (Agplyy = / € (016D (€l dv(E).
Sp(A) Sp(A)

Py = / (€103t €1 (). Ay = / )y | dr(©).  (19)
Sp(A) Sp(A)

Note that in physical literature, (19) are represented in the following forms:

) = ggpﬁm) (Eal b |En)pe + /5 o B 0 (20)

and
= n n dv (&), 21
(ol ggpjm) (b nly + /6 o P e ) (21)

where the sum is taken over the discrete spectrum and integral over the continuous spectrum.

3 Construction of n-RHS

Let n be a positive operator on the Hilbert space (H, (-, )% ). Given RHS (1), we assume that
n is continuous on the nuclear space (®,7¢) and satisfies n® C ®. Set an hermitian form (-, -),

over H by
(&, )y = (d.mb)n (6,0 € H). (22)

Then, the hermitian form endows the inner product where the vector space H becomes a pre-
Hilbert space; such inner product is denoted by (-, ), again and the pre-Hilbert space is denoted
by Hy = (H, (-,-)y). Also, we set the completion 77,, = (7777 m) of H,. This procedure shows
that n defines a new metric, called the positive-definite metric, in H such that H becomes a

Hilbert space with respect to </,\)/,7 It is shown that @ is a dense linear subspace of 7Tl:7 and

the inner product (-, -),, which is the restriction of (-,-), to ®, is separately continuous on the

nuclear space (®, 7). Therefore, the family
®CH,Cd, o (23)

becomes an RHS; hereafter, we call (23) an n-RHS.

An extension of 1 to the dual and anti-dual spaces ® and ®* are easily established as
follows. The assumption wherein 7 is continuous on (®,73) and has n® C @ provides the
mappings 7’ : @ — @ and 7% : X — X by (¥ (f))(¢) := f(n(p)) for ¢ € &, f € &/ where

j =1, %. From these mappings we can derive the operator 7 : &’ U ®* — &' U ®*, where

(1) (@) = f(n(e)) (24)



for f € ® U®* and ¢ € ®. It is easy to check the relations, #(f) € ® for f € & (j =1, x)
and 7(f*) = A(f)*. Note that & N &> = {0} (0 stands for the zero-valued functional on ®).
Furthermore, we can show
(Ply 1 =(ely 1)y =1e)y, (25)
where we denote 7({(y|,) by (¢l 7. The relations of (25) indicate that the operator 7, extended
from 7, transforms the bra and ket vectors of H-system into those of the ﬁ:?-system.
If we set a positive invertible operator n on H, then 77[;, =M, = (H,(-,)y), since (-,-)y
produces the equivalent norm of (-,-)%. The extension of the inverse 7! of 7, 77_\1 U P —

@' U P, is defined by
-1

(=L (F)(@) = F(n" () (26)

for f € ® U®* and ¢ € . It follows that ﬁ is the inverse of 7, namely,

Also, the following inverse relations to (25) are obtained:

1

(oly 1™ = (el 7 o)y = lo)y (28)

4 Bra-ket Formalism for quasi-Hermitian system
4.1 Spectral expansions

Let an n-quasi Hermitian operator A : D(A) — H in a Hilbert space H = (H, (-, -)3), where a
positive operator n is assumed to be invertible[29, 30, 31]. Then, by its definition, A satisfies
the following symmetric structure :

Al = nAn~t. (29)
Here 7 is intertwining between A and Af. Regarding the positive operator n we set the 7-
RHS by (23), and we assume that A® C &, n® = &, and A is continuous on (P,75). Using
this assumption and the fact that A is a self-adjoint operator in the Hilbert space H,, the
nuclear spectral theorem based on n-RHS can be applied to A and hence we have the following

representations : for any ¢, ¢ € ®,
Gt = [ o, e du) (30)
and
0.4 = [ (6, Klel, . (31)

where ()) is a Borel measure on the spectrum of A. ()|, and |X), (= (A|;) represent the

generalized eigenvectors for A; they satisfy the following (generalized) eigen equations,

(Al (Ad) = Aa (AL, (0), 1N, (Ad) = Aa|), (9) (32)



for any ¢ € ®. From (30)-(31), we obtain the spectral expansions of the bra and ket in the
H,-system by the generalized eigenvectors of A : for ¢ € @,

o, = /S PRCIIeN

(Agl, = /S MG, ), (33)

and

), = /S o DI X, ),

Ag), = /S M IR ), dn ) (34)

Using the transformations (25) and (28), the following relations with respect to the bra-ket
of H-system can be derived from (33) and (34) :

e = [ e, Oy
-/ (™, O, ),
o)y = /S(A) An~te), [A), du(N)

= [l e ), . (35)
Sp(A)

These relations formulate the spectral expansions in terms of the bra (p|,, and ket |p),,. Simi-

larly, we have the spectral expansions,

(Al = / M (2l IN), Ny 1),
Sp(A)

Ag)y, = /S MO 1o ), ), (36)

and

AT ://\'A‘l/\/\dA
(], = L el 0y Al Y,

Alp)
),
Note that the region of integral can convert from Sp(A) into the real line R and hereafter we

take R.

/ X L 7 [0 1), dp(N). (37)
Sp(A)

4.2 Complete bi-orthogonal system

From the spectral expansions obtained in the previous section, the complete bi-orthogonal system
is composed of the generalized eigenvectors of A. The completeness is easily found from the

relations in (35), which forms

1= / ), (Al () = / A, A, AV, (38)



where [ is the identity for the bra (-|,, and ket |-),,. Here, we define the operators (A|,, and

|A)4; in @ and ®* concerning H-system by

Aly = At and [A)y =77 ), (39)
Then, (38) is reformed to

T= [ Iy g3 = [ 10 (A i) (10)
Regarding the bi-orthogonality, we set () = (A, (¢) for (A[, and ¢ € ®. Using (38), we have
[, 7 00du)
R

= [ Oy ¥ (N, (o)

= [y ), (X, e dn)

= (Al 1oy

Y (41)
Thus, the orthonormal relation is obtained as

Al - [N, = (A, - [N, = 6(A = N). (42)

7
where ¢ is Diracs’ d-function as the normalization factor of the eigenvectors of A. Therefore, the
relations (40) and (42) show that the pair {|)), ,[A);} is the complete bi-orthogonal system.

4.3 Transformation Theory

Let a self-adjoint operator B : D(B) — H in (H, (-, -)%) satisfying continuity on (®, 74) and the
relation B® C ®. (B = g is possible.) From the nuclear spectral theorem based on RHS (1),
each of the bra (p|,, and ket |p),, can be expanded in the H-system by using the generalized

eigenvectors, denoted by {(w|,}, of B. Then, we have
(ol = [ (ol ol dute)

|@H=_éwmmmmww, (43)

where pi(w) is a Borel measure on the spectrum of B and (w|p),, = (w|y (@) and (plw),, =
lw)g; (¢). The generalized eigenvectors {(w|,} composes of the complete orthonormal system

for the H-system|[17], i.e.,
(wla)gy = 0(w — ') (44)
and

/MMWMMWPJ (45)
R
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are satisfied. Now we consider the transformations of the bra-ket vectors of the representa-
tions between the n-quasi Hermitian A and the above self-adjoint B. First, using the complete

relations (45) for {|w)4} and (40) for {|A)3 . [A), }, we obtain

(Wwle)y = (Wly o)y
_ / (@lae - [Ny g - 1) du(N)

- / (@IN)y (M) dii(V), (46)

for any ¢ € ®. The relation (46) shows the transformation of the representations from (A[,, to
{wly by means of the transformation factor (w|;,-[A), = (w|A),. Additionally, the transformation

from (A[, to (wly, is derived from

wlohy = / @yt - g A, - [9)3g ()
- / (WIN) 3 A, di(V), (47)

where (w|y, - |[A\)y = (w|\)4 represents the transformation factor. The other factors (Aw),, and
(Alw),, that characterize the transformation equations from (w|;, to (Al and (A], are obtained

by

Alehy = é(klw>ﬂ<wlw>adu(w) (48)

and

), = / Aw), (@10 (). (49)

Note that the following relations of the complex conjugates are satisfied:

(Mw)y = (@A), (Mw)zy = (w[A)y - (50)

We note that the transformation of the representations between the H-system and H,-system
is distinct from the typical transformation for Hermitian systems, such as the Fourier transforma-
tion between the real space and the momentum space. To see it, we consider the transformation
factors as the Fourier transformation, namely, we set (w|A), = \/ﬁe*“"’\/ "'in (46) for which A
and w are like the position and momentum operators in Hermitian quantum mechanics. Then,
from (50), we have (Alw), = (w|A); = \/2;—€M»‘/ " Therefore, we obtain by the transformations

Th
in (49)

ey = === [ ™ (ol dis) = Al

for any ¢ € ®. The relation induces (A, = (A|,;, which shows that 7 is the identity.

n
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5 Extensions

Since A is continuous on (@, 7p) with A® C ®, the operator A on & U ®* can be defined by

(A()(9) = [(A9)), (51)

for any ¢ € ® and f € ® U P*. The extension A satisfies the eigenequations represented by
(32); for the generalized eigenvectors {(A[,} and {|A),} of A we have

AL, A=Xa (AL, AN, =AalN),, (52)

where we denote A((Mn) by (Al, A. Similarly, the adjoint operator A can be extended to the
operator AT on ® U ®*, where

(AT(£))(¢) = f(AT(¢)) (53)

for p € &, f € P UDP*. As well as (52), the eigenequations
A </\’H = </\’7-[7 AT ‘/\>H = ‘)‘>Hv (54)

are satisfied. Between these extensions A and AT, the extension 7 of n is intertwining. Actually,

the following symmetric structure is shown:

(Bl AT )3 = (Bl DAG " |)yy (55)

where ¢, ¢ € ®. Considering that the relation (55) is satisfied, A is identified with the 7j-quasi
Hermitian operator for the bra-ket space.
The extensions constructed in the section can be applied to the practical physical non-

Hermitian system, such as Swanson model[33]. Regarding the details of the topics, see [26].
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