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1 Quantum Rabi model

This is the joint work with Tomoyuki Shirai and a review of [8]. The quantum Rabi model
describes a two-level atom coupled to a single mode photon by the dipole interaction term.
The single photon is represented by the 1D harmonic oscillator. Suppose that the eigenvalues
of the two-level atom is {—A, A}. Here A > 0 is a constant. Let 0., 0, and o, be the 2 x 2

Pauli matrices:
(0 1 (0 — (10
9%=\10) @7 \i o) =7 \o 1)

Then the Hamiltonian of the two-level atom is represented by Ac.. On the other hand let a
and a' be the annihilation operator and the creation operator in L?(R), respectively. They
are given by

a= ! d +z al = ! d +z
V2 \dx ’ V2 de '
They satisfy the canonical commutation relation [a,af] = 1, and a* = af, where a* denotes
the adjoint of a. The harmonic oscillator is given by a'a, i.e.,

The harmonic oscillator a'a is self-adjoint on D(%) N D(z?) and the spectrum of a'a is
spec(a’a) = NU {0}. The quantum Rabi Hamiltonian is defined as a self-adjoint operator
on the tensor product Hilbert space C? ® L*(R) by

K=Ao, @ 1+ 1®da+ go, 2 (a+a).
Here g € R stands for a coupling constant. It can be seen that K has the parity symmetry:

(K, 0. ® (—1)"%] = 0.
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The parity symmetry is also referred to as Zs-symmetry. We discuss measures associated
with the ground state of the quantum Rabi Hamiltonian. The quantum Rabi model can be
regarded as the one mode version of the spin-boson model in quantum field theory. In [5]
the path measure associated with the ground state of the spin-boson model is discussed. In
this note we also show the existence of the measure Il associated with the ground state ®,
of the quantum Rabi Hamiltonian. Then under some condition we can see that

((I)gv Oq)g) = En, [f(?]

for some observable O with a function fo.

2 Probabilistic preparation

2.1 Unitary transformations

In this section we define a self-adjoint operators L. Let 0 = (0, 0,,0,). The rotation group
in R? has an adjoint representation on su(2). Let n € R® be a unit vector and 6 € [0, 27).
Thus el#/20m7 (g . U)e_(i/Q)G”"’ = Rx - 0, where R denotes the 3 x 3 matrix representing the
rotation around n by an angle 6. In particular for n = (0,1,0) and 6 = 7/2, we have
Uo,U =0, and Uo,U"! = —0,, where

U = e, (2.1)
Then
UKU™' = (_%%+%x2_\/§9x_% , A )
—A —d 12 V2gr -4
Let us define the unitary operator S,;. Let p = —i% and F' denotes the Fourier transform

on L*(R). Then S, is defined by

F 0 0  eV2p
s=(5 ) (e 07) 22)

Let ¢, be the normalized ground state of ata, ie., aTang = 0 and it is explicitly given by
palw) = w2,

Since i, is strictly positive, we can define the unitary operator U,, : L*(R) — L*(R, @idx)
by

U f =0, ' . (2.3)
We set the probability measure goz(:c)d:c on R by dy, i.e.,

1 2
dp(x) = ﬁe_m dz.



Define
H=C>® L*(R,dp).

Let U = U, ,U. We define the self-adjoint operator L by

L=UKU "= -No,® 1+ go, (b +b)+1wbb

_1d 4 —
_(Trm T P& . d20 <) - Vagr A , (2.4)

Here b and b are the annihilation operator and the creation operator in L2(R,du), which
are defined by ¢, 'a*@, = b¥. It is actually given by

b=a+—, b =a—

x
NG V2

2.2 Ornstein-Uhrenbeck process

Let (X;)i>0 be the Ornstein-Uhrenbeck process on a probability space
(X, By, P?).

We see that P*(Xy = z) =1 and

./%Eﬁ [Xi] dpu(x) =0, /}%Eﬁ (X, X,] dp(a) = %e—lt—sl,

Here E |- - -] denotes the expectation with respect to the probability measure P*. Let h = bb.
The generator of X; is given by —h and

(6, 8) oy = /IR o [mw(xg] dpu(x). (2.5)

It is well known that the Ornstein-Uhrenbeck process can be represented by 1D-Brownian
motion. Let (B;)i>o be 1D-Brownian motion starting from z at ¢ = 0 on a probability

space (X, By, WP). The distributions of X, under P* and e~ <x + \%Bezs,l) under W? are

identical. We denote this as

1
X, 4 s (x + EBezs_O s> 0. (2.6)

We can compute the density function k; of X; as

EE[f(X,)] = / £ (). 2)dy,

where

kely, 7) ;) exp C%) . (2.7)



The Mehler kernel M; is defined by

Psl) _ ;) ) ( (14 e2)(a? 447 — 4mye—t) |

]\ft(%y) = /@t(y,x) D) 1 — o2t

= ex
©e(Y) (1= e 2

For the later use we extend the Ornstein-Uhrenbeck process (X;);>o to the Ornstein-
Uhrenbeck process (Xt)teR on the whole real line on the probability space (X, B¢, P*). Here
X =X x X, By = By x By and P* = P* ® P*. Define for w = (w;,ws) € X x X

A { Xi(wi), >0,

Xl W) = X (ws), t<0 (28)

Then Xt and X _s for any s, > 0 are independent. We also see that

(6, €)1y — / Epe |o(Xo)w( Xt du / Epe |(X_y)0(X, 8)] du(z)  (2.9)

for any 0 < s < 1.

2.3 Spin process

In order to show the spin part by a path measure we introduce a Poisson process. Let (N;);>o
be a Poisson process on a probability space

(yv By, H)
with the unit intensity, i.e.,

",

= ¢ n > 0.

En []I{Nt:n}}

Note that N; is a nonnegative integer-valued random process, Nog = 0 and ¢ — NV; is not
decreasing. Furthermore ¢ — N; is right continuous and its left limit exists (cadldg). Let

Zy = {-1,+1}.

Then for u € L?(Zy),

lullfo = D lule)?

Q€L
Introducing the norm on € by (u,v)e2 = 3.7, @v;, we identify €2 = [*(2y) by C* 5 u =

<Zl ) = u(a) with u(+1) = u; and u(—1) = us. Note that
2

(u7 U)(c2 = (U, U)L2(22).

Under this identification o,,0, and o, are represented as the operators U,, U, and U, re-
spectively on L?(Zy) by

Upu(a) = u(—a), Uyu(a) = —iou(—a), Uu(a)=au(a), u€ L*(Z,). (2.10)



We define
Sy = (-1)Ma, «ac€z,.

Here (S})¢>0 is a dichotomous process which is referred to as a spin process in this note. Let
op = 3(0.+ioy) (0. —io,) = —0, + 1 be the fermionic harmonic oscillator. Then it is known
that for u,v € C?, (u,e 7" v)c2 = 3, ;. En[u(So)v(S;)]. Hence

(u, €' v)cs = €' > Enfu(So)v(Sy)]. (2.11)

a€Z2

We also extend the Poisson process (Nt)t>0 to the Poisson process (Nt)teR on the whole real
line on a probability space (), By, 1), where Y=Yx), By = By x By and I=TxIl.
Let (N;)i>o be a Poisson process on (), By, II) such that ¢ — N is left continuous and its
right limit exists (caglad). Define for w = (wy,wp) € Y x Y,

7 _ Nt(wl)7 tZ 07
New) = { N y(ws), <0

Then R >t — N, is a cadlag path. Note that N, is independent of N_; for any s, > 0. We
define R A
Sy = (-1)Ma, o€z,

By the shift invariance of S, 9, Proposition 3.44] we can see that for u,v € C?

(€ 0)ce = e Y Bglu(So)o(5)] = ' Y Enlu(S_.)o(S,-)

[ASY2) QEZo

for any 0 < s < t.

3 Path measure associated with the ground state

In this section we construct the path measure associated with the ground state of the quan-
tum Rabi model. We recall that L. = —Ao, @ 14+ 1® b'b+ go, @ (b+b'). Let &, be the
ground state of L such that

Lo, = £,
with £/ = infspec(L). It is shown that &, > 0 in [4] under the identification (3.1). Hence
(1, ®g)y # 0. Then

—tL]l
s = 0 =y,

Let us set
<O> = ((I)ga Oq)g)H

for a bounded operator O. Then we have

—tL —tL
(O) = Tim (e "1, Qe 1)y

tooo et 13,



The right-hand side can be represented in terms of Feynman-Kac formula, and under some
condition we can also see that

(O) = En..[fo]

with some probability measure II,, and a function f». The probability measure Il is
referred to as the path measure associated with the ground state ®,. The similar results are
investigated in models in quantum field theory [10, 1, 5, 6, 7], but as far as we know there
is no example in quantum mechanics.

3.1 Feynman-Kac formula

Combining (2.5) and (2.11) we can represent (¢, e 1)) by a path measure. Let
ds = <SS7-XS) s> 0

be the (Zy x R)-valued random process on the probability space (X ® Y, By ® By, P* @ II).
We introduce the identification:

H = 1*(Zy X R) (3.1)

( ¢+($) ) = ¢<Oé7 13) = 6+1a¢+<x) + 6—1a¢— (T)a (Oz, T) € Zz X R. (3.2)

Here 005 = { (1) g ;g . We use identification (3.1) without notices unless no confusion
arises. Let W : Zy X R — R be defined by
W(a,z) = V2az.

Thus W (g, ) = V25, X,. The Poisson integral fOH W (gs—)dN; is a random process on the
probability space (X ® Y, By ® By, P* ® II), which is defined by

t+ n n
([ Waa.) wsws) = W o (wn, ) = VED Sy, ).
0 j=1 j=1
Here {s;} is the set of jump points such that N,,_(w;) # N4 (w;) for 0 < s; <. Let

B[] % 3 /RE;EH L ldua).

aEZ2

Lemma 3.1 Let ¢.vp € H. Then under the identification (3.2), it follows that

(6,7 F9) = 26'B [§ao)th(g) e W] (33)



Proof: We refer the reader to [8]. |

Lemma 3.1 can be extended to the path integral representations of Euclidean Green
functions. Let h = —A/2 and (B;);>0 be 1D Brownian motion on (X, By, W?*). Suppose that
0<t0 <t1 < ... < tn Let C{to’tl """ tn}(A()X"'XAn) = {WEX ‘W(t]) EA],j :O,l,...,n}
be a cylinder set. Then it is known that

Wﬂc(C{toﬂfl ..... tn}(AO X oo X An)) — R* [(H ]lAj(Btj)>
=0

We know furthermore that for f,g € L?(R),

/RE“" [(ﬁ ﬂAj(Btj)> F(Bo)g(By)

Lemma 3.2 Let f; = fj(a,x) be bounded function on Zy x R for j = 0,1,...,n. Suppose
that 0 <tg <t; < ...<t,. Then

dx — <f7 e—toh]lee—(tl—to)h L. e_(tn_tn_l)h]lAne_(t_tn)hg).

(¢)7 t()Lf e~ tl to Lf e (t2 tl)L . 67(tn7tn_1)Lfnef(t7tn)L,€/))
QO 1/) Qt (H jj Qt ) e_gfo W(Qs)ds] ]

Proof: Denote the natural filtrations of (/V;);>o and (X¢)i>0 by A5 = o(N,,0 <1 < s) and
Ms = o(X,,0 <r <s), respectively. The Markov properties of (NV;)i>o and (X¢)i>o yield
that

= 2€tE

(e—ste—tL¢) (CM, x)

= s tmyEp e W (g RS R (oo WG (g,)] |

= SHERES [e 9o W)dr 1y VELES [efgﬁ Wlarea ) gy )| A % ‘///H
= €S+t]EHE§ -G_gfos W(qr)d”'f<qs)e—g fot W(qr+5)dr¢(Qt+s)]

= "H'ELE e OSHW(qT)drf(QS)Gﬁ(QtJrs)] :

Repeating these procedures we have the lemma. [ |

3.2 Probability measure II,, associated with the ground state

We set Ty, = Sas and ¢& = (T}, X,). We assume that A > 0 in what follows.

Lemma 3.3 Let ¢, € H. Then

(¢, e Fy) = ey / Enmp [o(ap v e )e 5 V0] du(a). (3.4)

a€Z2



Proof: Since

1 1 g
Bl S “ppae L t
AL az®ﬂ+ﬂ®Abb+Aaz®(b +b),

the Feynman-Kac formula (3.3) yields that

(¢,6_tL(b) — (¢7 efAtiLqﬁ) — eAt Z /EHE% |:¢(SO7XO)¢(SAt7Xt)67% fom ﬁSSXs/Ads] d,u(x)

a€Z2

By the change of variable s to As in & fOAt ﬁSSXS/Ads, we see (3.4). [ |
For the later use we have a technical lemma below.
Lemma 3.4 We have

2 76—2t 2
o [e—ngW@?)ds} _ oo er e esds)e o f§ 2= N Aeds|ay

In particular

2 (=2
E% [e—gfot W(é?)ds] < elal(i—emDa o [ T iy 2y

Proof: We have
ES [e‘gfot W(‘is&)ds] = EY, [e—gf(f e‘s(w+%Bezs_1)(—1)Nﬁsds]
— e—g(f(f e_s(_l)NASds)x]E?/v [e_g N 3(1_6_25)/2(_1)NA5d5]

= e‘g(f(f 6_5(—1)1\]&5(13)“"@%2”[5 ]1(176*25)/2(')(_1)]\]&3‘15Hiz(a).

Then the lemma is proven. [ |

Now we extend (7});>o to the process on the whole real line. Let
T, = (-1)"a teRr.

We can realize (T} )ser as a coordinate process as usual. Let D = D(R) be the space of cadlag
paths on R. There exists a topology d° on D such that (D, d°) is a separable and complete
metric space (e.g. [3, Section 3.5] and [2, Section 16]). Let Bp be the Borel sigma-field of
D. Thus R

7, : (¥, By, 1) — (D, Bp)

is an D-valued random variable. We denote its image measure on (D, Bp) by Q% ie.,
Q¥(A) = I(T,*(A)) for A € Bp, and the coordinate process on (D, Bp) by the same symbol

(T))ez0, ie., Ty(w) = w(t) for w € D. Let my : D — R™ be the projection defined by
ma(w) = (w(to), ..., w(ty)) for w e D and A = {tg,...,t,}. Then

A={m {(E)|A CR,#A < 00, E € B(RM)}

is the family of cylinder sets. It is known that the sigma-field generated by cylinder sets
coincides with Bp. Moreover let Dy = D([-T,T]) be the space of cadlag paths on [T, T



and 77 : D — Dy be the projection defined by 7w = w[_p7). Let Br be the Borel sigma-
field of Dy. Let mp : Dy — RY be the projection defined by 7y (w) = (w(to), . ..,w(t,)) for
w € Dy and A = {ty,...,t,}. Note that we use the same notation 7 as the projection from
D to R*. Then

Ar = {m {(E)|A C [-T,T],#A < 0o, E € B(R")}

is the family of cylinder sets. We set

B=Jr '8, Br= ] ='(B.).

$>0 0<s<T

It is also seen that the sigma-field generated by [OS (resp. Z%T) coincides with Bp (resp. Br).
Together with them we have

Bp = o(A) =a(B), Br=a(Ar)=o(Br). (3.5)

Hence (3.3) can be reformulated in terms of the coordinate process (7});>0 on (D, Bp, Q*)

instead of (Y, By, II) as
(6, e~thgp) = et Z /]EQE W —9.Jo W(ds )deJ(AA)] dp(z). (3.6)
aEZ

Here o
i® = (T,,X,) s€ER,

where X, is the Ornstein-Uhlenbeck process on the whole real line. The advantage of (3.4)
is that AM disappears. AM is not shift invariant but 7} in (3.4) is shift invariant. Then

S [ s olae o510 )] apo

acZs

=3 [ eae We G2, )| ate)

acZso

for any 0 < r <t. Let
Wal(t,s) =T, T,e” =50, (3.7)

Lemma 3.5 We have

2t ¢
(1, e~ t1) = QeAt]E‘é {exp <%/0 ds/0 d/rWA(s,/r)>] .

Proof: By the Feynman-Kac formula given by (3.4) and inserting (2.6), we can see that

(1, e7tE1) = 2 Z EQ []E% [e—QIJ Tse‘““Be2s_1dS] /e‘(ﬁgfot Tse‘st)xdu(x)}
R

[ASYA)
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Since

. ¢
Ef [e_gfotTSe_sBewflds} = exp <%/ ds

L s 2
/6—<\/§9f0 Tse ds)zd/t(fﬁ) = exp {% (
R

we obtain that
2 gt ¢
(1, e7tE1) = 2 Z EQ {exp (%/ ds/ drTSTTe_S_”)} .
0 0

[ASYA)

Hence the lemma follows. |

Remark 3.6 (1) Since Wa(s,r) is independent of o, E [exp < f ds fo drWa(s r))] is

also independent of o. R
(2) By the shift invariance of Ts we can also see that

2 [ t 2 [ t—u
EQ {exp (5/0 ds/o erA(s,r)>] = EQ {exp (E /_u ds /_u d’r‘WA(S,’f‘)):|

for any 0 < u <t. Thus we see that

(e, e 1) = 2¢*~'E {exp <9—2 / ) ds / ) erA(m))]
= 220 {exp( / ds/ drWa(s,r )} . (3.8)

We can also compute (e 21, e=#'be~L1) for 8 > 0.
Lemma 3.7 Let 8 > 0. Then

(e—tL Ilv e—BbTbe—tL]l)

2t ot 0 gt
= 2e 2A1t]EQ {exp <g2 / Wa(s,r)dsdr — g*(1 — e_[j)/ / WA(S,r)dsdr>] .
—tJ—t -t JO

Proof: Since

(¢, b)) = Z /qb (a, Xo)Eg [ (a, Xp)|dp(x),
aEZ2
we see that

(e, e ety = ) / (e~ 1) (cr, Xo)EE[(e 1) (v, X)) dps(z).

aEZ2
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It is straightforward to compute (e *“1) (v, Xp) and (e7*1)(cv, X5). We have

(e 1) (a, Xo) = eAtIEgJE% [e‘ﬁ"fot Tsxfds]

o eAtIE% |:€—\/§gf0t TSE_SdSIE?/V [e—g fot TSE—SBEQS_1d5i|:|

. 2 .
_ eAtIE% |:e—\/§g f(f Tse_sdsze% f(f ds fg drTsTre_(SJ”)(EQ(SAT)—I):| )

The computation of E [(e7*£1)(a, X5)] is more complicated than that of (e~**1)(c, Xo).
We have

N 2 A A
B [l (0 X)) = 2155 [gf [ BT fan o]

Inserting (2.6) to Xz above again, we obtain that

& _ 2 aA A
— AMgY, []E% [e\/%fé Te=sdse™ (w4 J5B,25 ) 4 fi ds J} drTsTre-<5+r><e2<w>—1)}}

& s — 2 5 —(s+r — 2 o —(s+r SAT
= MEQ {e‘(ﬂgﬁfne ds)e™%z 4 [¢ ds [ drfyTre (4 (1—e=28) (5 [Lds [ drTyTpe=(++7) (2050 >—”}

_ eAtEa (\[gfo Ti_se Sds)e By 2 fo dsfo drTs_Tr_se —(s+m)(1— 3_2[3) fo dsfO ArTs_+Ty_se —(s47) (e2(sAT) 1)
- Q

In the last line above we shift TS by ¢. Since Tu for 0 < u <t and Ts_t for 0 < s <t are
independent, combining above computations, we have

( —tL]l e—BbTb —tL]l)

o § 2At/ |: \[gfo Tse_sds)x —(\fgfo T_ te_sds)e_ﬂ 22 fot dsfot drTy Ty e=(s+m) (e2(sAT) 1)
a€Z2

xXe & fo dsfo ArTs—yTr_pe= 5+ (1 6_2’3) fo dsfo drTi—iTrmge (T (2000 - 1):| dz (3 9)

Terms dependent on z on the exponent above can be computed as

t t
—z? = \/_g( - / T,_ 2ge_sds—I—/ Tse_sds) T
0

g t 2 92 t ot 2
(q' + == / T e °ds + —e‘ﬁ Ts_te_sds> + = </ Tee °ds + e_d/ Ts_te_sd:;) .
V2 0 2 0 0

The first term on the right-hand side can be integrated with respect to dz as

1 _ 9 [t —s g B [t Csq)2
\/_ e <x+\3§ fO Tse ds+ \%e fO Ts_te ds) dr = 1.
T Jr
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The second term on the right-hand side can be computed as

t t 2
(/ Tse_sds—i—e_ﬁ/ Ts_te_sds>
0 0

it ot it ot it pt
:/ / TSTTe_(S”)dsdr—i—%_B/ /TS_tTTe_(S+T)de7‘—|—€_26/ / T T ye” T dsdr.

JO JO JO JO JO
(3.10)

Terms independent of x on (3.9) are

/ ds/ T.T.e SJ“") 2(shr) _ dT+/ ds/ T 1te_(sw)(l—e_%))dr
0 0

+ / ds / Toe™ (26N — 1)dr. (3.11)

0 0
Then the sum of (3.10) and (3.11) is

(3.10) + (3.11)

/ ds/ T el ’"Idr—k/ ds/ T, T.e ="ldr + 2¢77 / / The 6t dsdr
/ ds/ T e 15~ ’"ldr+/ ds/ T e 57y + 2¢~ / / “ls=rldsdr.

By the trick f_ I . f f —|—f0 fo —|—2f fov we see that

(3.10) + (3.11) / ds/ T,Te s mldr —2(1 — e™® / /TTe s=rldsdr.

Then the lemma follows. |
Define the probability measure IIr on (D, Bp) by

11
Iy (A) = Z_Téem S Eg [nAezf—TT at 2y dsWMtvs)} , A€ Bp, (3.12)

aEZ2

where Zp = 122 Y | EQ |eT 5 T dsWa() | g the normalizing constant. Note that

pair interaction Wa(t,s) is independent of o and hence one can replace ) ., E& with
2EY in (3.12). We also notice that 1 = [[®g13, = >, cp, [i [Pe(a, 2)Pdp(z), 2 = |13, =
S oes, o dpi(z) and 277 = e "M
Let A; € B(R) for j =0,1,...,n and A = {lo,t1,...,l,} C [=1,T]. The cylinder set is
defined by
CR(Ag x -+ x Ap) ={weDr|wt;) € A;,j=0,1,...,n}.

Recall that the family of cylinder sets is denoted by Azy. We also note that o(Ar) = Br.
Let

my(A) = 2Pty / EQ]E ]1A<1> G5 P, (4t )e—gfitW@?)dS] dp(z). (3.13)

a€Zs
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Since l% is a finitely additive family of sets, we define the finitely additive set function v on
(D, B) by v(A) = my(A) for A € 7, 1(B,).
Lemma 3.8 v is well defined, i.e., mi(A) = ms(A) for A € 7, (B,) C 7;71(Bs).

Proof: Notice that m; om; ' and m, o7, ! are probability measures on (D;, B;). We compute
finite dimensional distributions of m; o 7 and mgom; !t Let A = {to, t1,...,t,} C [, 1] C
[—s, s]. Since e7"£®, = @, for any r > 0, we have by (4.4),

my o H(OMAg x --- x Ay))

(25t 2AtZ/EQE <H]1A Tt ) )(I) (qf)e—gfftW(é?)ds dyu(z)

aEZ2

= (e —(t0+t)L<I) Ty e—(tl to)L]l o (tn— tn,l)L]lAne (t_tn)zq)g)
((I)g7 ]lA e~ (t1— to)LllA1 . 6_(t”_t"‘1)E]1An<I>g)
= (6_(t°+5)L(I>g, ﬂAoe—(tl—to)LﬂAl .. e—(tn—tn_l)LﬂAne—(s_tn)L@g)
=msom H(CMAg x --- x A)).

It is straightforward to see that the Kolmogorov consistency condition also holds true:

my ot (C’t{A’Sl"“’Sm} <A0 X oo X Ay X HR)) =mpom, (CHMNAg x -+ x Ay)).

Let 7y : [—t,t]* — R* be the projection such that for w € [, {|%, maw = (w(to), ..., w(ty))-
Thus by the Kolmogorov extension theorem there exists a unique probability measure m; on
([—t.t]*, o(A;)) such that

My (my(Ag X - X Ap)) = myom, L (CMAg x -+ x Ay)) (3.14)

for all A C [~t,t] with #A < oo and A; € B(R). Since the extension is unique, m; o ;' =
my. Similarly there exists a unique probability measure m; on ([—t,{]¥, o(A;)) such that

Mg O 71{1 = m,. Then mgo 7rt_1 =m0 7rt_1 on B;, which implies the lemma. |

The first task is to extend v to a probability measure by the Hopf extension theorem.
Lemma 3.9 v can be uniquely extended to a probability measure 11, on (D, Bp).

Proof: Suppose that FE, El%’ such that £, D E,.; D ... and lim, o v(FE,) = a > 0. It is
enough to show that (), E, # 0 by the Hopf extenmon theorem. Let E = w7 () with
E! € Br,. We can assume that T, < Tj,41 <— o00. Let ur = vo 7TT be a probability
measure on Dp. Since Dr is a Polish space, ur is regular, i.e., for A € By and ¢ > 0 there
exist a compact set A and an open set O in Dy such that K C ACOand pur(O\ K) <e.
There exists a compact set K/, C Dy, such that ur, (E, \ K) < a/2". Let K, = m7.'(K}),
Dy, = Nj_, Kj and D =2, D,. Since D C [, By, it is enough to show that D # 0. We
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see that

a—v(Dy)

IN

v(E,) —v(Dy,) <v(E, \D )
v(Uim En \ KG) = V(WT

B\ Kj5) = NTn(U? 1B\ K5)

J 1

pr, (B, \ K)) <Z“T (E5\ K7) <Za/2]

j=1

<.

Then 0 < v(D,,) and we see that D,, # 0. Let f, € D,, i.e., f, € ﬂ?zl K;. Thus
fn € K; for any n > (.

Let £ = 1. Then 7p (f,) € K] for any n > 1. Taking a subsequence n’, we see that
limy, oo 71, (frr) = h1 € K exists. Let ¢ = 2. Then np,(f,) € Kj for any n’ > 2. Take
a subsequence n” of n’ again, then lim, . 75, (fnr) = he € K} exists. Proceeding this
procedure, we can obtain a subsequence {m} that lim,, .. 77,(fn) = hs € K exists for
any (. Let g, = ny,'(hg) € Ly. Define g € D by g(z) = gi(x) for = € [T}, T;]. By the
construction this is well defined, i.e., go(x) = goi1(z) for @ € [Ty, T;]. We see that g € D
and D # (). [ |

For probability measures IIr and Il on (D, Bp) in order to show that II7(A) — I (A)

for every A € l%’, we define the finitely additive set function pr on (Dr, lc’;’T) Let 1y = e 71
for t > 0. Then s-limy o Iy = &, and [|17]|? = 2¢**# Z7. The finitely additive set function

pr on (Dr, %T) is defined by

S [ e (L b ) o) (@19

aEZy

/)T(A) — eQEt€2tA

H]lTH2

for A € m;'(B;) but t < T. The right-hand side of (3.15) is denoted by My (A).

Lemma 3.10 pr is well defined, i.e, My (A) = My (A) for A€ 7,1 (B) € 774(B,).

Proof: This is shown in a similar manner to Lemma 3.8. Let

MM@—ﬂ“mZ/&ﬁﬂﬂm<mm<wwl%WdM)

aEZ2

Then My om; ' and My om; ! are probability measures on (Dy, By). Let A = {to,t1,...,t,} C
[—t,t] C [—s,s]. We have by (4.4),

Mgy omH(CMAg x -+ x Ay))

2Bt Z /]E%E— [(H IlA Tt] > N7 (¢ )]IT +(dy )3 9 [t W) dr] dp(z)

acZsz
= (e~ (t0+t)LﬂT—t,ﬂA0€ (t1 to)LﬂAl___e (tn— t"_l)L]lAne (t— t")i]lT—t)

_ <e—(to+s)Z]1T_s7 ]lee—(tl—to)Z]lAl o e—(tn—tn,l)iﬂAne—(s—tn)Z]lT_s)

= Mpsom H(CMAg x - x A)).
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It is straightforward to see that the Kolmogorov consistency condition also holds true:

MT,to7Tt_1 (Ct{m& 77777 sm} <A0 X oo X An X HR)) = ]\JT¢O7T;1(CtA(A0 X oo X An))

Thus by the Kolmogorov extension theorem there exists a unique probability measure My
n ([, ¥ o(A;)) such that

My (myt(Ag X -+ x Ay)) = Mpy o H(CMAg x - x Ay)) (3.16)

for all A C [T, T] with #A < oo and A; € B(R). Since the extension is unique, Mg om, ' =
M. Smnlarly there exists a umque probablhty measure My, on ([—t, 1%, o (A;)) such that
My s o0 7Tt = ]\41S Then My o 7Tt = Mg, o0 7rt on B;, which implies the lemma. |

We shall show that pr = I on E%T for any T" > 0.

Lemma 3.11 We have pr = Il on E%T.

Proof: Let ¢t < T. It is enough to show that [I(A) = pr(A) for A € m, ' (B;). Let A =
{to, t1, ...;tnt C [~t,t] C [-T,T) and Ay x --- x A, € B(R"). We have

HTO»]Tt—l(Cé\(AO % An) — 2TA1 Z ]EQ [(H ]lA >€ s f_ dtf_ dsWA(tS)]

QEZQ
(3.17)
pToﬂ't_l(CA(AO X X Ay))

= P THQZ / ESER K <ﬁj>) (7% Dy (4 >e—9fitw<ﬁf>“] dp(x).
- (3.18)

By (4.4) we see that

1
[ 2

€2Et

A

(3.17) = (1, e~ ot DI qy om0l g, oy e T

(Np_y, e~ GFOLY, e=timtly g, o=l ) = (3.18).

Then we have
My om, '(CMAg x -+ x A)) = prom H(CMAg x --- x Ay)). (3.19)

Since both sides of (3.19) satisfy the Kolmogorov consistency condition, there exists a unique
probability measure p on (Dr, B;) such that

(i (Ag X - x Ay)) = Hpom, Y (CHAg x -+ x Ap)) = prom;, {(CHAg x -+ x Ay)).
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[lpom, ' and prom, * are probability measures on (Dy, B;), and Hpom, H(CMAgx---x A,)) =
Hrom Hmy (Agx -+ x Ay)) = prom, (CAMAgx --- x A,)) = prom, (my(Ag x -+ x Ay)).
Since the extension is unique, Iz o7t = = prom; ' on (D, B;) follows. [ |

The following proposition is shown for spin boson model in [5, Theorem 3.8] and for rela-
tivistic Pauli-Fierz model in [6, Lemma 7.6], and the proof for the quantum Rabi Hamiltonian
is a minor modification of [5, 6].

Proposition 3.12 There exists a probability measure I, on (D, Bp) such that

lim TIr(A) = [1.(A) A€B.

T—o00

Proof: By s-limy_,o 17 = ®, we obtain that s-limy_,o Ip—; = ®, and limy,o [|17]] = 1.
Then for each o € Zy, (Ip—/||17[|)(-,0) = @g(-,0) as T — oo in L*(R,dp). Let ®f = H g
Note that ®,, ®T € L>(Zy x R). Let A € m,'(B,). Then IIp(A) = pr(A) by Lemma 3.11
and v(A) = II(A) by Lemma 3.8. We have

Hr(4) = Te(A) = pr(4) = v(A)
PP S gy [nA / (@462 (01") — BL(a5)L () ) eI W] du<x>] .

[ASYA)

Then

[ 38 [[euimaa) - oFaS)erae)] e ) dute)

< [ [[outa) - SE I, ] e ] duta)

+ [ w5 (|85 [@a?) - 7)) dpga).

R

We estimate [, EZ Hfbg AA)\<I> (G5)|e 9 2, W )ds] dp(x). By the shift invariance
we have

e H@g( )~ BB | eI du)
= [ 19a(a) - 91815 [|octaf

o9 J3 W(d?)ds] dpu(z).

By the Schwarz inequality we also have

<(/ \cbg@?)—@5@6)\2@(@)1/2( [ 5 ||t

Since by Lemma 3.4,

} du(@)UzEE [e‘ng(ftW(‘jsA)dSDl/Q.

2 [e—zgfﬁtvv(qf)ds] Plol(=e20)la] g2 [T /2 2ty 2y
P )
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we have

"U\H

/ BT8P0

= </ 24 @?(a(?)r?du(x))m ([ -rai) ™

Here we employed that &, € L>®(Zy x R). Since [, 1D, (G0°) — @g((joA)Pd,u(x) —0asT — oo,

[

as T — oo. Similarly we can also show that
[ w5 [l a5 @) - T[] dpta) o
R

as T' — oo. Then the proof is complete. |

o 9L W(d?)dS] dp(z)

Deld%) = BTG50 6| eI dp(a) = 0

The sequence of probability measures (Il7)r~¢ is said to locally converge to the probability
measure IT,, whenever limy_,o, I7(A) = I (A) for all A € m;*(B,) and for all ¢t > 0.

Corollary 3.13 Let [ be a B;-measurable and bounded function. Then
im Ep, [f] = En [f]
T—o0

Proof: It is enough to show the corollary for a nonnegative function f. Since f is bounded
and B;-measurable, there exists a sequence { f,,} such that lim,,_,o sup,cp | fn(2)— f(2)| = 0.
Here f, is of the form f, = >77" a;1a, with A; € B; and a; > 0. Let ¢ > 0 be arbitrary.
We assume that sup,cp |fn(z) — f(2)| < e. Then we see that

Enig [f] = B ]| < Eng [l = fall + [Bng [fo] = En [fall + Enc ([ fo = 1]
< 2e+ |EHT [fn] — Epni [fn”

and from Proposition 3.12 it follows that limy_, [En,.[f] —En. [f]| < 2¢. Then the corollary
follows. u

4 Expectations by Il

In this section we give some examples of application of II,,. These examples are one mode
versions of the spin boson model [10, 5]. Then we show only outlines of proofs.

4.1 Number operator b'b
Theorem 4.1 Let f € C. Then
<e»’3bTb> = Ep_ [efgz(lfeﬂ)fgoo I WA(s,r)dsdri| 7 (41)

(b'D)™ i (m)g* B, [( /_ (; /O h WA(s,'r')dsd'r)l]. (4.2)

=1
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Here a;(m) = (_l—,l)l Zizl(—l)s(i) are the Stirling numbers. In particular ((bTb)™) < 29" — 1
for any m > 0.

Simple but non trivial application is as follows. We know that (o, ® (—1)"'?) < 0 since the
parity of ®, is —1. As a corollary of Theorem 4.1 we can show that ((—1)""*) > 0.

Corollary 4.2 We have

<<_ﬂ)bTb> = Err, [67292 ono Jo> Wa(s,r)dsdr > 0.

Proof: Put # = i in Theorem 4.1. Then the corollary follows. |

4.2 (Gaussian functions

We construct a path integral representation of (e#*).

Theorem 4.3 We have

<€Zﬂx> _ 6_52/4EH [eiﬁK] ,

e}

where

9 [T
K=" Tse lds.
5/

Corollary 4.4 Let § € C such that |5| < 1. Then

1 272
(e7) = —— =B {6%] . (4.3)
In particular limgyy ||e5%°/2®, | = oo.
Proof: By Theorem 4.2 we see that
1 . 2 1 252 : 2
<e_I82q;2/2> _ ((I)g7ezk,8xq)g)e—k /Qdk — e—k B8 /4]EH [elk,BK] e—k /Qdk,
vV 21 R 21 R >

1 —k252/4 k,@K —k2/2 :| 1 |: _52K2:|
=E — (& e’ (& dk| = ———E e B2z |,
flee [\/m/R NN

By an analytic continuation we obtain (4.3) for § € C such that || < 1. Then the corollary
follows. n

4.3 Spin o,

Let L = L — E. Path integral representations of Euclidean Green functions by Lemma 3.2
can be rewritten as follows.



19

Corollary 4.5 (1) Suppose that ¢,¢ € H and [; = fj(a,z) € L>(ZyxR) forj =0,1,...,n,
and 0 <tg <ty <...<t,<t. Then

<¢7 e—toifoe—(tl—tO)Zfle—(tz—tl)Z L e_(t"_t”‘l)ifne_(t_t")izb)
_ . L R o (W2 )ds
~en 3 [ ) (Tn ) o imeow]
aEZ2 R 7=0
(2) Suppose that g; = g;(a) € L®(Zy) for j =0,1,....n and 0 <ty <ty < ... < l, < L.
Then
(]17 e—toigo(az)e—(tl—to)igl(Oz)e—(tg—tl)i . e—(tn—tn_l)Egn(Uz)e—(t—tn)Z]1)
=eMe™ Y B KH gj@) / Bf o9 o Wi du(ﬂf)] . (4.5)
QaEZy =0 R

Proof: (1) is a simple reworking of Lemma 3.2 and (2) is a special case of (1). |

One can see that the integrand in (4.5) is
ES [6—gfgw@£)ds} _ omo(Jl e ()N asds)e 2 [T )N as| ay.
by Lemma 3.4.

Theorem 4.6 We have (aze_“_S'EaZ) = Er_, [TtTS] for any t,s € R.

Proof: By Lemma 4.5 and a limiting argument, we see that

—tL 9 —tL
(Uzq)g7€ Uzq)g) = :,lg%o ||]lT_t/2H2(UZ]1T_t/27€ Uz]lT—t/2)

€2ETe2TA

A N 2 T T
= lim ———— ) E{ [T_t T} 0e dethdSWA(taS):| .
A TP 2 B | ToosT
Then we have

H]ITHQ 62ET62TA

(0.@y, ¢ o, ®,) = lim

a |7 r 2T Qi [T dsw, (t,s)
B o T 2 [T‘“QT”W Pttt

[ASYA)

. . sy

||]1TH2 E% |:T—t/27}/26% Jlpdt [Zp dsWA(t73):| A A
= lim o
T—oo || Ip_y/al? E [e% I dthTdsWA(t,S)] 1 [T /2Th o]

Hence for t > s,

(0:@, 0™ 0.®y) = En [T (12T (o) 2] = En [TVT]
by the shift invariance. [ |
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