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ABSTRACT. In this article, we give a brief overview of the problem of zero distribution of families
of self-reciprocal polynomials whose coefficients arise from special values of L-functions.

A non-zero polynomial P(z) € C[x] of degree d is said to be self-inversive if there exists ¢ € C,
with || = 1 such that

ezdﬁ(é) - P(2).

We call a self-inversive polynomial as self-reciprocal if P(x) € R[z] and € = +1. It is clear that
if 0 # o is a root of a self-inversive polynomial P(x), then so is 1/a. Thus, in the same spirit as
the Riemann hypothesis, it is natural to investigate whether all zeros of a self-inversive polynomial
P(x) lie on its ‘curve of symmetry’, namely the unit circle S*. Clearly, one must impose additional

conditions on P(z) to ensure unimodularity of its zeros.

In this note, we focus on families of self-inversive polynomials whose coefficients are composed
of special values of certain L-functions. We will give an outline of the history and context of the
problem, highlight the important methods used and mention relevant conjectures. This article is
based on the talk delivered by the author at the RIMS Analytic Number Theory and Related Topics
Workshop in October 2024, and two forthcoming papers, [3] and [4].

1. Special Values of ((s)

The study of L-functions is an important theme in number theory and their special values at
integer points are expected to capture significant arithmetic information. Moreover, their values at
positive integers are believed to be a rich source of (new) transcendental numbers. The origin of
this line of inquiry can be traced back to Euler’s resolution of the Basel problem.

For Re(s) > 1, define the Riemann zeta-function

()= ~= TI (1—i)_1
n=1™"  p_prime p*
Then Euler demonstrated that for a positive integer k > 1,
2k
C(2k) =~ (27;()%)?%’
where B, denotes the n-th Bernoulli number given by the generating function
t > Bn o,

et - 1 - n=0 F ’

so that By = 1, By = =1/2, Bops+1 = 0 and Bay, € Q for m > 1. Thus, ((2k) is a transcendental
number. A natural question is whether the same holds for ((2k + 1), i.e., are the odd zeta-values
1
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also transcendental? This is one of the major open problems in transcendental number theory. It
is widely believed that

Conjecture. The numbers
{mu{C(2k+1) : keZ, k>1}
are algebraically independent over Q.
To date, there have been several attempts to gain deeper understanding about the odd-zeta

values. One such attempt can be found in Ramanujan’s notebooks [16] as the following formula:
for positive real numbers o and 8 with o3 = 72 and any positive integer k,

%) —2k1 o0 —2k1
{ (2k+1)+z prT }-(-5)‘k{ (2k+1)+z p 1}

2k k1 Boj Boj12-2; B j
2 Z( 1y (2)! (2k +2 — 2])'( )

The above formula was 1ndependently discovered by E. Grosswald [11] in 1970 in the context of
transformation formulae of Eichler integrals. Let H denote the upper half plane, that is the set of
complex numbers with strictly positive imaginary part. For any positive integer k, set

1 Boj Bagia-aj ;
R = J J 27 1
Then we have the following.
Theorem (Grosswald). Let k> 1 be an integer and ox(n) := ¥, d*. For z e H, define
o - Ok(n) 27
Fi(z) = 712::1 —E ¢ e
Then
1y 1 2mi) 2k
Forr (2) = 2% Fopn (-;) =3 C(2k+1) (2% -1) + (2—)32k+1(2) (2)

One can recover Ramanujan’s formula from the above identity by specializing at z = ia/7, —1/z =
i3/m and noting that

nFk

Fi(2) = =C(k) - Z_:l o 2minz _ 1

2. Ramanujan polynomials

From equation (2), it is clear that if zg is a zero of Roy.1(2), and zg is not a 2k-th root of unity,
then

C(2k+1) = ﬁ (.7:2k+1(20) ~ 20" Fopan (;—;) )
0

Therefore, zeros of the polynomial Rgy.1(2) have the potential to shed light on the nature of odd
zeta-values.

With this motivation, in 2011, M. R. Murty, C. Smyth and R. Wang [15] isolated the polynomial
Rop1(z) for independent study and called them ‘Ramanujan polynomials’. Observe that Roj.q(x)
is an even and self-reciprocal polynomial, that is,

Rop1(=x) = Rape1(x) and 2**2 Rope1(1/7) = Rojer ()
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respectively. Hence, if zg is a zero of Rgy.1(x), then so are —zp, 2y I and -2y 1 In the same paper,
Murty-Smyth-Wang proved the following.

Theorem 2.1 (Murty-Smyth-Wang). For an integer k > 2, the following holds.

(a) The polynomial Roy,1(x) has 4 distinct real zeros of the form oy > 1, —ay, a;l and —a;l.
All the remaining zeros of Ropy1(x) lie on the unit circle and are uniformly distributed as
k — oo.

2mif3 4 o=2mif3

(b) Apart from +i when k is even and e when 3 | k, none of the other roots of

unity occur as zeros of Roki1(x).
3. ‘Riemann hypothesis’ for period polynomials

A flurry of activity followed Theorem 2.1 because one can recognize the Ramanujan poly-
nomial Rop,1(2) as the odd part of the period polynomial associated to the normalized Eisen-
stein series Fokio(z) of weight 2k + 2 with respect to SLa(Z). More specifically, for k € Zs; and
f € ]\/fgk_,.Q(SLQ(Z)), let

f(z)=ap(0)+ > ap(n) e?minz,
n=1
Then, one can attach an L-function to f as
& ar(n)
L(Svf) = Z f—sv
n=1 T

which is absolutely convergent in Re(s) > 2k+2. Set Af(s) := (2m) °T'(s) L(s, f) to be the completed
L-function. Then As(s) extends to a holomorphic function on C, with only possible simple poles
at s =0 and s =2k +2 when a;(0) # 0. Define

The function f*(z) is an Eichler integral of the second kind. One can view it (essentially) as a
(2k + 1)-th anti-derivative of f(z). The following result, proved in various contexts by M. Razar
[17], A. Weil [18] and L. Goldstein-M. Razar [10], measures the ‘deviation from modularity’ of the
function f*(z).

Theorem 3.1 (Razar, Weil, Goldstein-Razar).

2mi)*" " ap(0) [ gy 1), 2 2mi) L2k +1-4,f)
T (2k+1)! (z _2)+;) 41

F(2) =2 (-1/2) = A =rp(2).

When f is a cusp form, 7;(2) is a self-inversive polynomial due to the functional equation of
A;(s). This polynomial is referred to as the ‘period polynomial’ of f(z). These play a central role
in the Eichler-Shimura cohomology. If a;(0) # 0, then z7;(z) is a self-inversive polynomial. In
particular, the Ramanujan polynomial Roj.1(2) is the odd part of z7g,, ., (2). Thus, it is natural
to investigate whether the zeros of period polynomials associated to general modular forms also lie
on the unit circle. This theme is known as the Riemann hypothesis for period polynomials. The
unimodularity of zeros of zrg,,,(%) was shown by M. Lalin and C. Smyth in 2012. For weight one
Hecke eigenforms, this was proved by A. El-Guindy and W. Raji in 2014 and for Hecke eigencusp-
forms of higher level by S. Jin, W. Ma, K. Ono, K. Soundararajan in 2016. We refer the reader to
the excellent survey [7] for further details.
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4. Zeros of self-inversive polynomials

As Ramanujan polynomials and period polynomials are special cases of self-inversive polynomi-
als, we recount some techniques involved in the study of their zeros.

In 1922, A. Cohn showed that all zeros of a polynomial P(xz) lie on S if and only if P(z) is
self-inversive and all zeros of its derivative P’(x) lie inside the closed unit disk, D := {z € C : |z| < 1}.
In specific situations, verification of the condition on the zeros of the derivative may not be easy.
Thus, other sufficient conditions that force all zeros of a self-inversive polynomial P(z) to lie on S*
were obtained by several authors (see [13] for details). In particular, M. Lalin and C. Smyth [13,
Theorem 1] proved the following.

Theorem 4.1 (Lalin-Smyth). Let 0 # h(z) € C[z] with degh =n be such that all zeros of h(z) lie
in D. Set h*(x) = 2"h(1/z). Then for any d>n and X € S', the self-inversive polynomial

PN () = 2T h(z) + AW ()
has all its zeros on S'.

In this context, we have below the well-known result of Enestrom[9], independently proved by
Kakeya [12].

Theorem 4.2 (Enestrom-Kakeya). Let F'(x) = byz™ + b, 121 + - + byx + by € R[z] be such that
0<bg<by < <by. Then all the zeros of F(x) lie in D.

Therefore, if 0 # f(x) € R[z] is a self-reciprocal polynomial given by

1

flx) = A" + asp 122+t a2 4 202" + £ (an+1x”‘1 + o+ Q91X + agn)

2n—1 2n—-2 +

( or f(l’) = a2p-1T + agn-2% !

et apx” + e (ana:”* + o+ Qop_aT + agn_l) resp.),

for € = £1 such that agp > agn-1 > =+ > ap41 > ap (Or @2p-1 > A2p-2 > +++ > Ap+1 > ayp resp.), then all
zeros of f(x) lie on the unit circle. This monotonicity property of coefficients is at the heart of
many of the results mentioned earlier.

The above observation implies the following general proposition [4].

Proposition 4.3 (Charan-Pathak). Let L(s) = 3,51 an \,° be a general Dirichlet series, convergent
in Re(s) > 1 with

e a, >0 forn>1, and

e D<A < Ng< <A\, <~ and N\, > 00 as n — oo.

Then, for k>4, all zeros of Ay r(x) = Z?;g L(j+2)L(k-2-j) 2’ lie on the unit circle.

As immediate consequences, we derive the unimodularity of zeros of Ay, 1,(x) for L(s) = L(s, Xxo.n)
where X0, is the principal Dirichlet character modulo n (a result of Chourasiya-Jamal-Maji [6]),
L(s) = ¢(s,a) (the Hurwitz zeta-function when 0 < o < 1), L(s) = (x(s) (the Dedekind zeta-
function associated to a number field K/Q), L(s) = L(s, f ® f) (the Rankin-Selberg convolution of
a holomorphic newform f with itself), L(s) = (g, ;](s) (the zeta-function associated to polynomials
over the finite field Fy) and L(s) = (g(s) (the Epstein zeta-function attached to a positive definite
quadratic form).
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5. Variants of Ramanujan Polynomials

Recently, several generalizations of Ramanujan’s formula have appeared in the literature. Each
of these formulae have corresponding polynomials with coefficients arising from special values of
Dirichlet series. Analogous to Murty-Smyth-Wang, one can investigate the location of zeros of
these self-reciprocal polynomials. Since they also involve values of the Dirichlet series at s = 0, that
is, outside the region of absolute convergence, one cannot apply Proposition 4.3. Therefore, one
must treat these instances individually, relying on specific estimates on zeta-values that allow the
application of the intermediate value theorem. We treat two such scenarios below.

5.1. Powers of zeta-values. In 2019, A. A. Dixit and R. Gupta [8, Theorem 2.1] obtained an
analog of Ramanujan’s formula for the square of odd zeta values.

Theorem (A. A. Dixit, R. Gupta). Let 7(r) = #divisors of r, € = ¢™/*, Gy(n) := Ydn 7(d) T(n/d) d*,
and

Gors1 () = C(2k + 1)(7+log (;) - %)

o n _
+;%§1)(K0(4eﬁx)+f(g(4eﬁx)), x>0,

where K, (x) := g% 1s the modified Bessel function of the second kind of order z, and I, is

that of the first kind. Then, for positive real number o and B with o = w2,
o Gopar(@) = (1) 57 Gog1 (8)

k+1 A Bo. B Iy 2 2j
_ . odk p2k+2 _1\J 27 2k+2-2j g
=-r2%g ]2%( 1) ((2j)! (2k+2—2j)!) (ﬁ) '

This was further generalized to any positive integer power of odd zeta-values by S. Banerjee and
V. Sahani [1, Theorem 1.1] in 2023.

Motivated by the analogy of the sums in terms of Bernoulli numbers appearing above with
Ramanujan polynomials, and supported by numerical evidence, B. Maji and T. Sarkar in [14]
proposed the following conjecture.

Conjecture 1 (Maji-Sarkar). For positive integers k and £, set

k+1 { Bo. B . ¢ ‘
R = -1 (€+1)] 25 2k+2-2j ]. 5
) azo( : ) (2k+2-2))1) " 3)

Then all the non-real zeros of Ry ¢(x) lie on the unit circle.

Note that Rk71(m2) = Roj,1(x) is the Ramanujan polynomial. Thus, for £ = 1, the conjecture follows
from the theorem of M. R. Murty, C. Smyth, and R. Wang [15].

In a recent joint work with M. Charan and J. Meher [3], we settle the above conjecture and prove

Theorem 5.1 (Charan-Meher-Pathak). For positive integers k and £, Conjecture 1 is true. More
specifically, except for two real zeros of the form oy, and ozu_l with ag e > 1, the remaining zeros
of Ry () lie on the unit circle and are simple. Furthermore, for a fized ¢, as k — oo, the non-real
zeros of Ry ¢(x) are equidistributed on the unit circle.
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The method of proof of Theorem 5.1 is inspired by that in [15]. However, the corresponding
estimates in our case require one to determine the explicit dependence on ¢, which adds to the
difficulty. A brief outline of the proof is as follows.

Sketch of Proof of Theorem 5.1. We work with the monic counterpart of Ry o, namely
(_1)(Z+1)(k+1)

(Bakr2/(2k +2)1)"
In terms of zeta-values, Euler’s formula implies that

My () = Ry, o(2%).

Mk,f(x) _ $2k+2 n (_1)(£’+1)(k'+1) _ 24 zk:(_l)(ZJrl)(kJrJ) qJZ l’2j7
j=1
with . .
BSCOICIETETY)
I C(2k +2)
The case when £ is odd and when / is even are treated separately. First, we deduce the following
proposition by comparing values of M}, ((z) at z = 1 and as z = oo on the real line, and applying
the intermediate value theorem. When k and ¢ are both even, M}, (1) = 0, and one needs to study
M (1)

j=1,2, k.

Proposition 5.2. Let k and { be positive integers.
(a) If £ is odd, then My ,(z) has exactly four real zeros, of the form B¢, —Bre, 1/Bre and
—1/Bke with Bre> 1.
(b) Suppose that ¢ is even.
(1) If k is odd, then My, () has at least four real zeros of the form By ¢, —Bre, 1/Bre and
—l/ﬁkj with ﬁk7g > 1.
(11) If k is even, then My (2) has at least six real zeros of the form =1, 1, By ¢, —Br.e, 1/Bks
and —1/5]@,5 with 6k,£ > 1.

To complete the proof of Theorem 5.1, we study the number of zeros of My, ;(z) on the unit circle.
The idea is to approximate My ,(z) by a suitable trigonometric polynomial Ay (z) and count the
number of sign changes of the associated real-valued function on the unit circle.

For positive integers k and ¢ with &k > 3, let

k-1
Ak Z(z) . 22k+2 T (_1)(€+1)(k+1) _ (2q1)€(z2k T (_1)(€+1)(k+1)22) _ 2@ Z(—l)(€+1)(k+j)z2j,
j=2
and set
Ago(2) = My o(2) = Ape(2)
el 1) (k+5) ¢ £ 25 (4)
= -9t Z(_l)(€+ ) (k+5) (¢ -1)=%.

j=2
We first establish that Ay ¢(z) is a ‘good’ approximation for Mj, ¢(2) on the unit circle.
Proposition 5.3. For all z € C such that |z| =1,
- (1.306)° -1

A <2f¢, % 0.2762, ith
| k}g(z)| cp ¥ wi cy 0,306

for k>3 and £>1.
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Then, we investigate the behaviour of My, ¢(z) and Ay ¢(z) on the unit circle. For 6 € [0, 27], let

-1 e‘i(k”)eMk,g(ew) if k and ¢ are both even,
e‘i(k+1)9Mk7g(ew) otherwise.

Fi0(0) ={

The reciprocal nature of Mj, ¢(z) implies that the function FJ, () is real-valued. Similarly, let

—i 710 4y () if k and ¢ are both even,
¢TI0 4y () otherwise.

fre(0) = {

By the symmetry of coefficients, it is evident that fj; () is also real-valued. Proposition 5.3 is
equivalent to the statement that

¢ _
|Fkﬁ(9) - fk7€(9)| < 24 cp X 0.2762, with Cp = (1?())0?6)336 !

We choose 0; € (0,2m) for 1 < j <2k -3 such that f; ,(6;) has sign (-1)7*! and
| fr.0(6)] > 2% ¢ x 0.2762.
Thus, we establish that Fy ¢(6) changes sign at least 2k—1 times in [0, 27]. This proves the following.

Theorem 5.4. For positive integers k and ¢ with k > 3, the polynomial My, o(2) has at least 2k — 2
zeros on the unit circle.

Combining the above result with Proposition 5.2 concludes the proof.

O

5.2. Values of the Hurwitz zeta-function. For 0 < @ < 1 and Re(s) > 1, the Hurwitz zeta
function is given by

i 1
((s,a):= T;)m.

It is known that ((s,«) can be analytically continued to C except for a simple pole at s = 1 with
residue 1. Recently, P. Chavan [5] obtained analogs of Ramanujan’s formulae for values of the
Hurwitz zeta-function. One can consider the polynomials occurring in these identities as analogs of
Ramanujan polynomials for the Hurwitz zeta-function. With this analogy, jointly with M. Charan
[4] we investigate the unimodularity of their zeros and prove the following.

Theorem 5.5 (M. Charan, S. Pathak). Let k > 4 be a positive integer and 0.1 < a <1, a # 1/2.
Define

k+1

Pra(z) = > (24, 0) C(2k +2 - 2j, ) 7.
j=0

Then except for 2 real zeros of the form vy, >1 and 'y,;la, all other zeros of Py o(x) lie on the unit
circle.

The proof is along similar lines as that of Theorem 5.1. However, one needs estimates on values
of the Hurwitz zeta-function which make the dependence on a explicit. Although the theorem is
proved when 0.1 < a, computational evidence suggests that the result also holds for 0 < w < 0.1. To
prove it when « is close to zero, more precise estimates are required than those that are currently
known. This is because as o — 0, ;0 — 1.
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6. Concluding remarks

Ramanujan polynomials and their variants, as defined in (1) and (3) are polynomials with rational
coefficients. Thus, their zeros are algebraic numbers. An immediate question that arises is whether
any of these zeros that are on the unit circle are roots of unity. For Ramanujan polynomials, this
was answered in [15]. However, this is not so easy for the variants appearing in the Maji-Sarkar
conjecture. Investigating other algebraic properties of these polynomials, such as their irreducibility
or Galois groups will be of interest as well.

In the context of polynomials associated to values of Dirichlet L-functions, there are several
conjectures proposed by Berndt and Straub [2] which remain open. For instance, they conjecture
the following.

Conjecture (Berndt-Straub [2], Conjecture 7.9). For positive integers L and M, let

E B By Lz k-s-1

Si(; x, ) = Y X Zhos (—) ,
b(x: 1) SZE) sl(k-s)! \M

where By, are generalized Bernoulli numbers defined by

L at 0 n
te 4

E a = E B, —

a:1X( ) el — 1 = n,x n!

for a character x modulo L. Then for all non-principal real Dirichlet characters x modulo L, all
the non-zero roots of Si(x;x,x) lie on the unit circle.

Due to oscillations in character values, the methods discussed in this article are not amenable to
approach the above problem and new techniques are necessary for its resolution. We relegate these
as avenues for future research.

ACKNOWLEDGMENTS

The author is grateful to Prof. Maki Nakasuji and Prof. Takashi Taniguchi for providing her the
opportunity to visit RIMS Kyoto and present a talk at the Analytic Number Theory workshop. She
is deeply thankful to Prof. Kohji Matsumoto for his support, kind hospitality and encouragement.

REFERENCES

[1] S. Banerjee and V. Sahani, Transformation formulas for the higher power of odd zeta values and generalized
Eisenstein series, arXiv:2206.13331.

[2] B. C. Berndt and A. Straub, On a secant Dirichlet series and Eichler integrals of Eisenstein series, Math. Z. 284
(2016), no. 3-4, 827-852; MR3563256

[3] M. Charan, J. Meher, S. Pathak, Zeros of variants of Ramanujan polynomials, submitted.

[4] M. Charan, S. Pathak, Zeros of Ramanugan polynomials associated to Huriwtz zeta-function, in preparation.

[5] P. Chavan, Hurwitz zeta functions and Ramanugjan’s identity for odd zeta values, J. Math. Anal. Appl. 527 (2023),
no. 2, Paper No. 127524, 20 pp.; MR4606148

[6] S. Chourasiya, M. K. Jamal and B. Maji, A new Ramanujan-type identity for L(2k + 1,x1), Ramanujan J. 60
(2023), no. 3, 729-750; MR4552658

[7] N. Diamantis and L. Rolen, Period polynomials, derivatives of L-functions, and zeros of polynomials, Res. Math.
Sci. 5, no. 1, Paper no. 9, (2018) 15 pp.

[8] A. A. Dixit and R. Gupta, On squares of odd zeta values and analogues of Eisenstein series, Adv. Appl. Math.
110 (2019), 86-119.

[9] G. Enestrom, Remarque sur un théoréme relatif auz racines de l'equation ot tous les coefficientes a sont réel et
positifs, Tohoku Math. J., 18 (1920), pp. 34-36.

[10] L. J. Goldstein and M. Razar, Ramanugan type formulas for ((2k — 1), J. Pure Appl. Algebra 13 (1978) 13-17.



ZEROS OF RECIPROCAL POLYNOMIALS 9

[11] E. Grosswald, Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen, Nachr. Akad. Wiss.
Gottingen (1970).

[12] S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tohoku Math. J. First
Ser., 2 (1912), pp. 140-142

[13] M. N. Lalin and C. Smyth, Unimodularity of zeros of self-inversive polynomials, Acta. Math. Hungar. 138 (1-2)
(2013) 85-101.

[14] B. Maji and T. Sarkar, Zeros of Ramanujan type polynomials, arXiv:2306.10283.

[15] M. R. Murty, C. Smyth, and R. Wang, Zeros of Ramanujan’s polynomials, J. Ramanujan Math. Soc. 26 (2011),
107-125.

[16] S. Ramanujan, Notebooks - Vols. 1, 2, Tata Institute of Fundamental Research, Bombay (1957).

[17] M. Razar, Values of Dirichlet series at integers in the critical strip, Modular functions of one variable VI, Lecture
Notes in Mathematics 627, Proceedings of an International Conference, University of Bonn (eds J.-P. Serre and
D.B. Zagier; Springer, Berlin, 1977).

[18] A. Weil, Remarks on Hecke’s lemma and its use, Kyoto International Symposium on Algebraic Number Theory,
Research Institute of Mathematical Sciences (University of Kyoto, Kyoto, 1976) 267-274.

CHENNAI MATHEMATICAL INSTITUTE, H-1 SIPCOT IT PARK, SIRUSERI, KELAMBAKKAM, TAMIL NADU, 603 103
INDIA.
FEmail address: siddhi@cmi.ac.in



