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Abstract

This article is a write-up of the talk presented by the second named author at RIMS workshop
“Analytic Number Theory and Related Topics”. Our main result is upper and lower bounds in terms
of the Laplace eigenvalues for the sup-norms of the cusp forms on the orthogonal groups O(1,8n + 1)
given by theta lifts from Maass cusp forms of level one. Our result is based on an explicit formula
for the Petersson norms of the theta lifts with an explicit archimedean local factor and a pre-trace
formula for arithmetic quotients of real hyperbolic spaces, the latter of which is a general formula.

1 Main result and background

The problem of estimating the sup-norm of Laplace eigenfunctions on a compact Riemannian manifold is
a fundamental one in harmonic analysis and mathematical physics. The most basic result on this problem
is due to Avacumovié [1] and Levitan [21]. If X is a compact Riemannian manifold without boundary
and ¢ is an eigenfunction of the Laplacian on X with eigenvalue —A < 0, they show that
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In general, this is the best possible estimate and is indeed achieved when X is a sphere. On the other
hand, one expects stronger bounds to hold on a generic manifold. For instance, when X is negatively
curved, Bérard [2] showed that the bound (1) can be improved by a factor of \/log A. Moreover, it is
often possible to improve (1) by a power of A under arithmetic assumptions on X and ¢. The first such
improvement is due to Iwaniec and Sarnak [17]. They considered X a congruence arithmetic hyperbolic
surface arising from a quaternion algebra over Q (possibly split), and ¢ a Hecke-Maass cusp form. In
this case, they improved on (1) to obtain
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They also obtained a lower bound +/loglog A for an infinite sequence of ¢, which was later improved
to exp((1 + o(1))+/log A/loglog A) by Milievi¢ [24]. Let us also mention several other works on the
sup-norm problem [8], [9], [11], [13], [31], [32]. Among other things we also cite [27], which includes an
excellent review of the sup-norm problems in terms of elliptic differential operators.

We note that in these arithmetic settings, where X is taken to be a locally symmetric space, one
generally assumes that ¢ is an eigenfunction not just of the Laplacian, but of the full ring of invariant
differential operators. Under this assumption on ¢, it was shown by Sarnak [33] that the bound (1) can
be strengthened to

< A (2)

||d)HOo dimX —RankX

A T .
ol < ®)

This is sharp on spaces of compact type, and is the natural analog of (1) for these eigenfunctions.




It is also interesting to investigate the sup-norm of eigenfunctions in the case when X is not compact.
In this case, we now assume that ¢ is square-integrable. In the noncompact setting, the bound (1) (and
(3), under the appropriate assumptions) continues to hold on fixed compact sets, and it is natural to
ask whether it in fact holds globally (i.e. over the entire manifold). For this to happen one certainly
needs ||¢]|c to be finite, and this is not generally true, even when X is a finite volume locally symmetric
space. However, it is true if one assumes that X is a finite volume locally symmetric space and ¢ is
cuspidal (cf. [16]), and so we make these assumptions from now on.

In some cases, it is known that the bounds (1) and (3) hold globally. See for instance [7] for the
case of Hecke—-Maass forms on GLy over a number field, and [6] for Hecke-Maass forms on the space
PGL3(Z)\PGL3(R)/PO(3). (Note that [6] establishes a bound stronger than (1), but not as strong as
(3).) On the other hand, it was shown in [13] that (1) fails on PGL, (Z)\PGL, (R)/PO(n) for n > 6. The
reason for this failure is the large peaks of the GL,, Whittaker function in higher rank, which lead to large
values of cusp forms via the Fourier expansion. Moreover, it is generally expected that the large values
produced in this way occur high in the cusp, at height roughly v/A; [13] establishes the weaker result
that the suprema of these cusp forms occur at points tending to infinity. See [5] for an upper bound that
complements the lower bound of [13].

This phenomenon of cusp forms having a peak high in the cusp is a general one, which is already
present for GLy where it is caused by the transition range of the Bessel function K ,—,.(y) at y ~ r [33].

However, in this case the peak produced is only of size A/!2, which is smaller than (1). These results
lead one to ask the general question of whether a sequence of cusp forms on X realize their suprema in
a fixed compact set, or at a sequence of points tending to infinity.

We remark that if, instead of Maass forms, one considers holomorphic modular forms of growing
weight for the group SLy(Z), then the growth rate of the sup norm was determined by Xia [34] using the
Fourier expansion. Similar results in the case of Siegel modular forms were obtained by Blomer [4].

To state he main result of this article we introduce an even unimodular lattice (L, S) of rank N with
the quadratic form defined by the positive definite even integral matrix S. We note that N is divisible
1
by 8. Let L @ Z? with the quadratic form defined by Q = -5 , where Z? is viewed as a lattice
1
of the hyperbolic plane. The symmetric matrix @ defines the orthogonal group O(1, N + 1) over Q. The
main result is a formula for sup norm bounds of cusp forms Fy on orthogonal groups O(1, N +1) obtained

by theta lifts from f belonging to the space S(SLa(Z); —rzzl) of Maass cusp forms of level one with the
spectral parameter r. The automorphy of cusp forms F respects the arithmetic subgroup of O(1, N +1)

attached to the lattice L.

Theorem. 1.1. Let f € be as above and assume that f is a non-zero Hecke eigenform and the Fourier
coefficients {c(m) : m € Z} of f satisfy c(m) = £c(—m) for all m € Z. Let Fy be the lift of f to a cusp
form on O(1, N + 1) introduced above. Let —A be the Laplace eigenvalue of Fy. Then for any e > 0 and
any r, we have
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where § = 7/64 is the current best estimate towards the Ramanujan conjecture for Maass forms (cf. [18]).
We also have the lower bound
1F7lloo
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We note that the bound (1) in this case reads ||Fy||oo/||Ff|l2 < ANV/4, so that we are not quite able
to obtain this globally. We remark that we are free to assume that r > 1 when proving Theorem 1.1. On
the other hand, this condition holds automatically, as it is known that any cuspidal Laplace eigenfunction
on the modular surface has eigenvalue —A < —1/4, see for instance [10, 29].
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Remark 1. As alluded to above, the lower bound we prove for F) is obtained high in the cusp. In contrast
to this, there are several papers that establish power growth of eigenfunctions on hyperbolic manifolds,
and more generally on locally symmetric spaces of noncompact type, in fized compact sets [11, 12, 14,
20, 23, 30]. We mention in particular [12, 14], which apply to the higher-dimensional hyperbolic setting
considered here. (The results of [11] also include this, but the growth exponents produced are ineffective.)
In [14], Donnelly constructs compact hyperbolic (N + 1)-manifolds for N > 4, and sequences of Laplace
eigenfunctions {¢;}; that satisfy ||¢;||eo/||Pill2 > AZ(-N_3)/4. In [12], this lower bound was improved to
AZ(N_l)/ 7 for N even, and it is expected that this parity condition can be removed. Moreover, similarly
to Fy, the forms constructed in these papers are theta lifts from SLy. These results lead one to hope
that Fy might satisfy the same lower bound, which should be realized in a fixed compact subset of the
manifold. As this is larger than the lower bound of A5 T127¢ obtained from the peak of the Whittaker
function, one might therefore expect F; to realize their sup norms in the bulk, rather than the cusp.

Notation

If A e C and B € R, we use the notation A < B to mean that there is a constant C' > 0 such that
|A| < CB, and A ~ B means that A < B < A.

2 Theta lifts [y and its Petersson norms
The real Lie group for O(1, N + 1), say G, admits an Iwasawa decomposition G = NAK, where

1'zS  3'zSz Yy
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and K denotes a maximal compact subgroup. From the Iwasawa decomposition we can identify the
homogeneous space G/ K with the (NN + 1)-dimensional real hyperbolic space Hy := {(z,y) |z € RN, y €
R~} by the natural map

n(z)ay — (z,y).
The cusp forms we are going to study are regarded as cusp forms on the real hyperbolic space Hy .

For A € C and a congruence subgroup I' C SLy(R) we denote by S(T', \) the space of Maass cusp
forms of weight 0 on the complex upper half plane b := {u + /—1v € C | v > 0} whose eigenvalue with
respect to the hyperbolic Laplacian is .

For r € C we denote by M(I's,r) the space of smooth functions F on G satisfying the following
conditions:

N2

1
i) Q-F= N <r2 - T) F', where Q is the Casimir operator defined in [22, (2.3)],

ii) for any (v,g9.k) € I' x G x K, we have F(ygk) = F(g),
iii) F is of moderate growth.

Let r € R. We say that ' € M(T'g,v/—1r) is a cusp form if it vanishes at the cusps of I's. By [22, Section
2.3], any cusp form F' € M(I's,+/—1r) has a Fourier expansion of the form

F(n(z)ay) = Y ANy? K =1, (47|A|sy) exp(2my/=1'ASz). (6)
AeL\{0}

Here, [A|s := \/¢s()\) and K =, is the K-Bessel function.



Let
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1
f(r) = Zc(n)WQ@(Zlﬂnh)) exp(2mv—1nu) € S(SL2(Z); s ) (7)
n#0
be a Maass cusp form on b, where we use the Whittaker function W, Ve to describe the Fourier

expansion of f. Recall that we have supposed that L is an even ummodular lattice of rank N divisible

by 8. For 0 # X € L, define
AZN
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where d) denotes the greatest integer such that %)\ € L. By Theorems 3.1, 3.3 and 4.11 from [22] we
have

Theorem. 2.1. Let L be an even unimodular lattice. Let f € S(SLa(Z); —%’—1) with Fourier expansion
(7). Let Fy : Hy — C be given by the Fourier ezpansion (6) with Fourier coefficients A(X\) defined in
(8). Then

i) The map f — Fy is a map from S(SL2(Z); — ) to M(T'g,+/—1r) preserving cuspidality.
i) If f is a Hecke eigenform, then so is Fy.

The second assertion needs the adelic reformulation of Fy. Such formulation is useful to obtain the
explicit formula for the Petersson norm of Fy as follows:

Theorem. 2.2. Let f € S(SLo(Z); —=5L) be a Hecke Maass eigenform with respect to SLy(Z). Then
the Petersson norm of Fy is given by the formula

(N 7, Ad) N F(ﬂ+@)r(ﬂ _ ler) ‘
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Here, L(s, 7, Ad) is the finite part of the degree 3 adjoint L-function of 7.

To get this, we use the well known method of [26]. We first obtain an adelization of the theta lift
construction of Borcherds for our case, which is nothing but the adelization mentioned above. For this,
we follow the work of Kudla [19] where the adelization of the Borcherds construction is obtained for
orthogonal groups of signature (p,2). The L?-norm of the adelization ® of Fy can then be rewritten as

lolt= [ ([ o) B g2).s0iEoden ) alaadae
SL2(Q)\SL2(A)  SL2(Q)\SL2(A)

Here, fo is the adelization of f, Z is a section in an induced representation of Sp,(A) obtained from
the Weil representation corresponding to the theta lifting, and E is an Eisenstein series on Sp, obtained
from the Siegel Weil formula. As in [25], the inner integral is Eulerian and can be written as a product of
local integrals (see also [15, Section 11]). Since we are restricted to Maass forms f of level 1, in the non-
archimedean case, all the data is unramified and the integral is obtained in [25]. The main contribution
here is the archimedean integral computation, which is never an immediate consequence from general
formulas e.g. [26], [15] etc. The key ingredient of the archimedean computation is to realize that the
archimedean section =, is in the trivial K-type of the Sp,(R) representation, i.e. it is invariant under
the maximal compact subgroup of Sp,(R). Though the inner product formula is a well-known method
to show the injectivity of theta lifts (cf. [26]), let us remark here that, in [22], the injectivity of the
map f — Fy was proven for general even unimodular lattices by using the Fourier expansion at a cusp
corresponding to a sum of copies of the Fg-lattice, which has the property that it contains vectors of
squared length M for all M € Z-g. This yields another proof for the injectivity of the map f — FY,
which also works in full generality.



3 Upper bounds using the pre-trace formula

In this section, we use a pre-trace inequality to obtain upper bounds on the lifted form F;. The bound
we prove holds for any square-integrable Laplace eigenfunction on any hyperbolic orbifold X of finite
volume with the Laplacian A. To state it, we will need the notion of the height of a point x € X in the
cusp, denoted by ht(z), which we recall in this section. We note that only for this section, /—1r will
denote the spectral parameter of an eigenfunction on X, instead of the parameter of the Maass form f.
We note that these two spectral parameters are the same size, so this should not lead to any confusion.

Theorem. 3.1. Let X be a finite-volume hyperbolic orbifold of dimension N + 1. Let ¢» € L?*(X) be an
L?-normalized Laplace eigenfunction with spectral parameter /—1r, so that (A + 12 + N2 /4)y) = 0. We
have

Y(x) < (L4 DN+ ht(@) V21 + )N, e X

We shall assume in the proof that r > 1, as the other case is similar.

3.1 Background on hyperbolic geometry

We let G° be the group of isometries of Hy, which can be identified with the index two subgroup of
O(1, N) preserving the upper sheet of the two-sheeted hyperboloid. Let d be the standard distance
function on Hy, and let 9Hy ~ SV denote the boundary sphere.

Let X =T\ Hy, where T’ < G is a lattice. Let O(T') C OHx denote the set of fixed points of parabolic
elements of I'. We fix a set of representatives = for the I-orbits in O(T"), which can be identified with
the set of cusps of X. We let I's be the stabilizer of £ € Zin I'. For each £ € = we choose a horoball B
tangent to the boundary at &, and denote Ve = I':\B¢. By [28, Thm 12.7.4], we may choose each Bg so
that the following hold:

i) Ve is mapped isometrically to its image in X.
i) We have X = X [[ Ve, where Xj is compact.
iii) If y e I' = T¢, then BeNyB: = @.

We note that [28] states this theorem for manifolds, rather than orbifolds, but one may easily obtain the
result for an orbifold by using Selberg’s lemma to pass to a finite-index torsion-free subgroup of I'. We
now define the height function ht : X — Rx>1. If € Xg, we set ht(z) = 1. Next, suppose that = € V¢
for some £. Let Bo, denote the standard horoball {(z,y) : z € RY,y > 1}, and choose g¢ € G° such that
geBe = Boo. We define ht(z) = y(gex) (the y-coordinate of gex), which is independent of the choice of
ge. This has the key property that for any C' > 0, the set of points x € X with ht(z) < C' is compact.

3.2 Test functions

In this section, we construct a test function for use in the pre-trace inequality. We shall do this using the
Harish-Chandra transform, which we now recall. Define ¢4 to be the standard spherical function on Hy
or G° with spectral parameter s. We continue to normalize s so that v/—1R is the tempered axis. Let
K ~ O(N) be the standard maximal compact subgroup of G°. For a K-biinvariant function k € C°(G?),
we define its Harish-Chandra transform by

i) = [ k)elo)ds.

This is inverted by
k(g) = Cuy / F(s)ps(9)lc(s)|2ds
Vv—1R



for a constant Cp, where ¢(s) is Harish-Chandra’s c-function. We may now define the test function we
shall use.

Lemma. 3.2. There exists a K-biinvariant function k. € C>(G°) with the following properties:

(i) k. is supported in a fized compact set that is independent of r.
(ii) kr(s) >0 for s € vV—IR U (0, N/2].
(iii) kp(v/=1r) = 1.

(iv) ky(g) < rN(1 +rd(g,e) N2 In particular, ||k ||ec < V.

3.3 The pre-trace inequality

Let k- be as in Lemma 3.2. The fundamental inequality we shall use to bound ) is

@) < 3 k(e ). (9)
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This may be derived from the pre-trace formula, by using the positivity property (ii) of E,T to drop all terms
on the spectral side other than [¢)(z)|? (including the continuous spectrum). For this we remark that the
parameters of the discrete spectrum are contained in /—1R U (0, N/2], which parametrize equivalence
classes of irreducible unitary spherical principal series representations of O(1, N) together with spherical
complimentary series representations.

It may also be proved in an elementary way by an application of Cauchy—Schwartz and unfolding,
see for instance [12, Lemma 6.5], with the test function w there taken to be the function kQ satisfying
kO = h, so that k0 x (k0)* = k,.

Let R > 0 be a constant, independent of r, such that the support of k, is contained in the open
ball of radius R about the origin (0,1) in Hy. For z in any fixed compact subset of X, (9) and (iv)
give [1p(z)| < 7N/2, so we may assume that ht(z) > e > 1. In particular, 2 is contained in a cusp
neighborhood Vg, which we shall assume to be fixed for the rest of the proof. Moreover, until further
notice we identify « with a choice of lift © € B;. Under this assumption, we shall show that only v € I'¢
contribute to (9). Indeed, suppose that v € T satisfies k,.(z~yx) # 0. This implies that d(yz,r) < R.
This, together with ht(z) > e, implies that vz € Be, so that vB¢ N Bg # &, and hence that v € I'¢ as
required.

We now assume that our cusp & is the standard point at infinity, and denote I's and B¢ by I's and
By, as the proof for the other cusps is similar. We therefore have

[@))? < Y k(e ).
7€l
We next apply our upper bound (iv) for k,, which gives
pEP <Y S (1 rdie) VR

Y€l
d(yz,x)<R

We may identify I'y, with a lattice in Isom(R”Y). By [28, Thm 7.5.2], I's, has a finite index subgroup of
translations of rank N, which we identify with a lattice L C RYV. The action of L on Hy will be written
additively. We let 71,...,7, be coset representatives for L\I',, and define 2:; = v;&. We therefore have

k

p@))? <Y > (L +rd(l+a,x) N
=1 leL
d(l+z;,x)<R

Theorem 3.1 now follows from the following lemma.



Lemma. 3.3. Let v1,v2 € RV, and let x; = (vi,y) € Hy with y > 1. We have

Z (14 rd(f + x1,22)) V2 < 1 44N N/2,

leL
d(l+z1,z2)<R

4 Outline of the proof of Theorem 1.1

In this section we will give an outline for the proof of Theorem 1.1. The lower bound comes from the
first nonzero Fourier coeflicients of Fy. Regarding the upper bound, first note that Theorem 3.1 gives

|F(ngayh)| /|| Fylla < r™N/2 4 yN/2p N/

for all h € H(Ay) and all y > 1, where we are using the Fourier expansion to convert between the
classical and adelic pictures. By the Fourier expansion combined with some transition behavior of the
Bessel function, we have
y~N/2=1-20,3N/4+ 1420+ 1<y <rl1/12
|Fr(n(z)ay)| <en.p  y=N/2H1720,3N/4=5/6+204¢  11/12 ) < /o (10)
e Cv /21 < y.
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Here, 8 = 7/64 is the current best estimate towards the Ramanujan conjecture for Maass forms, and we
note that A ~ r2. Thus it suffices to consider the range where 1 < y < r/27x. We consider the point yo =
p(N/2+1420)/(N+1420) which is chosen so that the expressions y™V/2rV/4 and gy N/2-1-20p3N/4+1420 (),
tained by the pre-trace formula approach (cf. Theorem 3.1) and the Fourier expansion approach (cf. (10))
are both equal to 7-N/2+N(1+20)/4N+1420) (our desired upper bound) when evaluated at 4. An elementary
computation gives us that yg < 1112,

The expression 1V/2 + yN/2;:N/4 {5 increasing in y, so for 1 < y < yo we have

|F(ngayh)|/|[Fylla < r/% 4 yN2pN/A < pN/2 g o N/2, N/
< N/2+N(1+420) /4(N+1+20)

We next suppose that yo < y < r/2mw. Because the upper bound given by (10) is decreasing in y
(including across the transition point at y = 7'1/12), we may obtain an upper bound for |F(n,a,h)|/||Fy|2
by evaluating the upper bound at yo. As yo < r''/12, this gives

[P (raay )|/ Fylla < g5 /271~ SN0 /2N 20 4N+ 20 e

Note that we have A ~ r2 since 7 > 1. Combining the above computations completes the proof of the
upper bound in Theorem 1.1.
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