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1 Introduction

Liouville series L(z) = >~ 2" is known to have the following property:

Theorem 1.1 (Nishioka [3]). Let qi,...,q, be algebraic numbers with 0 < |¢;| < 1 (1 <
i < ). Then the values L(q1), ..., L(q,) are algebraically dependent if and only if there
exist i,7 with 1 <1 < j <r such that q;/q; is a oot of unity.

In what follows, Q" denotes the set of nonzero algebraic numbers. Let D = {zeC||7| <
1} and let po be the multiplicative group consisting of all the roots of unity. Theorem 1.1
means that the points of DNQ” at which L(z) takes algebraically dependent values lie on
the same orbit under the action of the group p., defined by ps X D 3 ((,2) — (z € D.

Although 1 is an infinite group, in this paper we consider the functions of several
variables with the following property: The points at which such a function takes the
same value always lie on the identical orbit under the action of a finite group including
non-commutative one, except trivial cases such as f(X,Y) = g(X™, YY) with the multi-
plicative action of the cyclic group G = (({w,(n)), where (y is a primitive N-th root of
unity. Let {R;}r>1 be a linear recurrence of positive integers satisfying

Rk—l—n == Cle—l—n—l +--F Can (k Z 1)7 (1>

where n > 2 and ¢y, . . ., ¢, are nonnegative integers with ¢, # 0. In this paper we assume
that g.c.d.(Rg, Rgt1, -, Rgen1) = 1 for all £ > 1 to exclude the trivial case above. The
author [8] studied the two-variable function E(x,q) defined by
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which may be regarded as an analogue of g-exponential function
gl

B0 =1 G- T

(cf. Gasper and Rahman [1]), if we replace k in the exponent of ¢ in E,(z) with {Ry}r>1
defined by (1). Let
PX)=X"—c X"~ ¢,

The author proved the following:



Theorem 1.2 (Corollary 4 of [8]). Let {Ri}x>1 be a linear recurrence satisfying (1).
Suppose that ®(+1) # 0 and that the ratio of any pair of distinct roots of ®(X) is not
a root of unity. Assume that g.c.d.(Rg, Ryy1,..., Rpysn_1) = 1 for all k > 1. Then the
infinite set of the values

{E(x,Q) ‘ z,q€Q, |q| < 1}

18 algebraically independent.

Remark 1.3. It is shown in Remark 2 of [5] that, if ®(£1) # 0 and if the ratio of any
pair of distinct roots of ®(X) is not a root of unity, then the { Ry }i>1 defined by (1) is
expressed as Ry, = cp® + o(p*) with ¢ > 0 and p > 1, which guarantees the convergence of
the series E(x,q).

Remark 1.4. The condition that g.c.d.(Ry, Rks1,..., Rkrn_1) = 1 for all £ > 1 implies
that the sequence { Ry }r>1 is not a geometric progression, which is a technically inevitable
condition for the values F(z,q) to be treated as special values of Mahler functions of
several variables similarly to our poof in Section 3.

Example 1.5. Let {F} }x>1 be the sequence of Fibonacci numbers defined by F; = Fy =1
and Fyi o = Fyy1 + Fy (k> 1). Since {F} }x>1 satisfies all the conditions of Theorem 1.2,
the infinite set of the values
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z,qeQ”, |q < 1}

is algebraically independent.

Since Ry, = cp* + o(p*) with ¢ > 0 and p > 1 by Remak 1.3, the two-variable function
E(x,q) converges on the domain

(Cx{lgl <1HUla| <1} x {lgl > 1}) = {(z,¢9) € C* | |g| <1V (Jz| <1Alql > 1)},
whereas a ‘balanced’ analogue
> k o Ri+Ro++Ry
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converges on the wider domain

Cx {lq] # 1} :={(x,q) € C* | |q| #1}.

Indeed, if ¢ # 0, then ©(x,q) is invariant under the map

o1 - (x7Q) — (_xvq_l)’

namely
o )kq—R1 Ro—--—Ry,

O(a1(z, q)) z; 1_ q—2R1 1— g 2R2) ... (1 — ¢ 2R¥)

= 0O(z,q)



and so ©(z,q) converges on C x {|g| # 1} by the similar reason to the convergence of
E(z,q) on C x {|q] < 1}.

Moreover, if { Ry }x>1 is a sequence of odd integers, then O(z, ¢) is invariant also under
the maps

oyt (1,q) > (~2,—¢)  and oy 1 (7,9) — (x,—¢7").
Since 01 0 01 = 03 0 09 = id and 0y 0 09 = 09 0 07 = 03, we see that G, = {id, 01, 02, 03}
is Klein four-group. Therefore, ©(z, ) can be regarded as a map defined on the set of
orbits (C x {|q| # 0,1})/G4, where C x {|q| # 0,1} = {(z,q) € C* | |¢| # 0,1}, namely
the map N
O (C X {lql 7é 0’ 1})/G4 — G(C X {|q| 7é 0> 1})

given by

(z.q) — O(z,q),

where (z,q) denotes the orbit represented by (x,q), is a well-defined surjection. Hence
the restriction to algebraic points

- .\ 2 o\ 2
@:((CX {\q[#O,l})ﬂ(Q ) )/G4—>@((<C>< {4l ;Ao,l})m(Q ) )
or equivalently
6: (T @ \{ld=11) /61— 0 (T* @ \{la| = 1))
is also a well-defined surjection. The author proved the following:

Theorem 1.6 (Theorem 1 of [9]). Let {Ry}r>1 be a linear recurrence satisfying (1).
Suppose that ®(—1) # 0, ®(2) < 0, and the ratio of any pair of distinct roots of (X)) is
not a root of unity. Assume that g.c.d.(Ry, Ris1,. .., Rkvn_1) =1 for all k > 1. Assume
further that { Ry }r>1 is a sequence of odd integers. Then the infinite set of the values

6 ((@x @ \{lal=1))/ )
15 algebraically independent.
Remark 1.7. It is easily seen that ®(2) < 0 implies that ®(1) # 0.
Corollary 1.8. Let {Ry}r>1 be as in Theorem 1.6. Then the infinite set of the values

e kgt Rat+ Ry .
kz(1—q2R1)(1—q2R2)...(1_q2Rk) z,g€Q", [q| #1
=1

15 a ‘4-fold’ algebraically independent set, namely in this set each value appears 4 times and
the infinite set consisting of all the distinct values of this set is algebraically independent.

Example 1.9. Let { P }r>1 be the sequence defined by Py = P, = 1 and Pyyo = 2P, +
P, (k> 1). Since {Py}r>1 satisfies all the conditions of Theorem 1.6, the infinite set of
the values

kz:(l_qul)(l_quz)...(l_q2Pk) r,q€Q, |q| #1
=1

is a ‘4-fold’ algebraically independent set.



2 Main results

The three-variable function

o xqu1+R2+”'+Rk

F(@.a,9) ZH 1- aqm - ,; (1 —ag*™)(1 —ag®?2)--- (1 — ag*Mx) @

k=1 l=1

converges on the domain

U :={(z,a,q) € C? | |q| < 1, aq*™ #1 for any k > 1}
U{(x,a,q) €C*|a#0, |qg| > 1, ag®™ # 1 for any k > 1}.

If a,q # 0, then F(z,a,q) is invariant under the map

Tt (z.a,q)— (o wa g ), (3)

namely

0 ( 1)ka—kxkq—R1 Ro—-—Ry

F(1(z,a, =
(7( 9)) 21 (1—alg2R) (1 — q-lg2R)... (1 — g lq2Fx)

= F(z,a,q).

Here and hereafter, NV denotes an integer greater than 1. Let (i be a primitive N-th
root of unity and let § € {1,..., N —1} be such that g.c.d.(0, N) = 1. If Ry = (mod N)
for all £ > 1, then F(z,a,q) is invariant also under the map

ot (z,a,q) — (3’7, (v a, (v q), (4)

namely F(o(z,a,q)) = F(x,a,q). In what follows, we denote by o and o7 the composi-
tions of maps g o--- 00 and o o T, respectively. By (3) and (4) we have oV = 72 = id,
N—_———

or ¢ (w,a,q) — (—(Pa Tz, (yPa (v g,
027 : (I‘,le,q> ( <N25 —11. <N46 _17<]2Vq_1>7
and
N lr =10 (2,0,q) — (=Ca e, (Bat v ah.
Hence {id, o, 02,..., 0V 7, 07, 0?7,...,0¥ 17} is isomorphic to the dihedral group

Dyx of order 2N. Since the equation ag?® = 1 is invariant under ¢ and 7, the dihedral
group Doy acts on the set

U = {(z.a,q) € C* | ag®™ # 1 for any k > 1, a #0, |q| #0,1}.

Therefore, F(z,a,q) can be regarded as a map defined on the set of orbits U*/Dyy,
namely the map ~
F : U*/Dyy — F(U™)



given by
(r,a,q) — F(x,a,q),

where (z,a,q) denotes the orbit represented by (x,a,q), is a well-defined surjection. In
other words, the image of the function F(z,a, q) is a 2N-fold cover. Hence the restriction
to algebraic points N

F o Ua/Don — F(Un),

is also a well-defined surjection, where

— w\ 3 _
Ui =070 (T) = {(@a.0) | 20,0 €T ag™ # 1 for any k> 1, |g] # 1},

In this paper we prove the following:

Main Theorem 2.1. Let {Ry}r>1 be a linear recurrence satisfying (1) and let § €
{1,...,N — 1} be such that g.c.d.(6, N) = 1. Suppose that ®(—1) # 0, ®(2) < 0,
and the ratio of any pair of distinct roots of ®(X) is not a root of unity. Assume that
g.c.d.(Rg, Rgs1, -y Rgin1) = 1 and Ry = 9 (mod N) for all k > 1. Then the infinite
set of the values f"(UA/DQN) is algebraically dependent if and only if there exist distinct
orbits (r1,a1,q1), - - -, (Ts, as,qs) € Us/Day, algebraic numbers cy, . . ., cs, not all zero, and
a sufficiently large positive integer u such that, for any k > u,

aquRk = aiquk (2<i<ys) and Zcixf_“qu”"'J’R’“ =0. (5)
=1
Remark 2.2. The equations (5) depend only on the orbits (z;,a;,q;) but not on the
choice of the representatives (z;, a;, ¢;), namely, under the action of the dihedral group
Dy, the equations (5) are invariant.

Main Theorem 2.3. Let {Ry}i>1 be a linear recurrence satisfying (1), let N be an
odd integer, and let 6 € {1,...,N — 1} be such that g.c.d.(, N) = 1. Suppose
that Ry = ¢ (mod N) and g.c.d.(Rxs1 — Rk, Rri2 — Rks1,-- o Reon — Rpyn1) =
N for all k > 1. Assume that ®(—1) # 0, ®(2) < 0, and the ratio of any
pair of distinct roots of ®(X) is not a root of unity. Then the infinite set of the
values f(UA/DgN) is algebraically dependent if and only if there exist distinct or-

bits (z1,a,q),...,(xs,a,q), (Ts11,a,—q), ..., (Tsis,a,—q) € Us/Day, algebraic numbers
Cl,...,Csit, not all zero, and a sufficiently large positive integer u such that, for any
k> u,
s s+t
Zcix;v—u-i-l + Z Ci(—l)R“+m+Rk1f§_u+l —0.
i=1 i=s+1

Remark 2.4. The condition of Main Theorem 2.3 that Ry = 0 (mod N) and
gcd.(Rgi1 — Ry, Riso — Ria, ooy Ren — Rkino1) = N for all £ > 1 implies that
g.c.d.(Rg, Rgq1, .-y Rpyno1) = 1 for all & > 1.

Example 2.5. Let {Ry};>1 be the sequence defined by Ry = Ry = 1 and Rjio =
NRy1 + Ry (k> 1), where N > 3 is an odd integer. Then {Rj}r>1 satisfies all the
conditions of Main Theorem 2.3 and the infinite set consisting of the distinct values of



©° quR1+R2+“'+Rk — R

k
Z(1—aq2R1)(1—a,q2R2)"'(]_—a,q2Rk) x7a’7qEQ 9 a’q %1 (k21)7 |Q|§£1
k=1

is algebraically dependent. In fact, there exists the linear relation

.F(JI,G,Q) - 2C32.F(<3.§C,CL,Q) - 2C3.F(C32$,CL, q) - 3.F<,I,CL, _Q> =0

holds for F(x,a,q) of the form (2). Note that (x,a,q),((3z,a,q),(32,a,q), and
(z,a, —q) are the distinct orbits of Uy/Day, since F(z,a,q), F((3z,a,q), F((3z, a,q), and
F(z,a,—q) are distinct as series in z, a, and q. Moreover, by Main Theorem 2.3 we have

trans. dego @ (F(w,a,q), (G, a,0), F(Gr,0,0), Flw,0,~q) ) =3,

or more precisely, any three of the numbers F(z,a,q), F((3z,a,q), F((3z,a,q), and
F(z,a,—q) are algebraically independent.

3 Proof of the main theorems

Let 2 = (w;;) be an n x n matrix with nonnegative integer entries, where n is as in (1).
We define a multiplicative transformation €2: C* — C" by

Oz = (ﬁzf”,ﬁzf“,...,ﬁzf"") (6)
j=1 j=1

Jj=1

for any z = (z1,...,2,) € C" Then Q(2*2) = Q"2 (k=0,1,2,...). Let {Ri}r>1 be a
linear recurrence satisfying (1) and define a monomial

M(z) =zt 2l (7)
Let
C1 1 0 0
(&) 0 1
O = Do 0 (8)
1
c, O 0

It follows from (1), (6), and (7) that

M(Qfz) = 2%+ 2l (k> 0). (9)
Sketch of the proof of Main Theorem 2.1. First we prove that, if there exist distinct
orbits (1, a1,q1), - . ., (x5, as, qs) € Ua/Dan, algebraic numbers ¢, .. ., ¢, not all zero, and

a sufficiently large positive integer u such that the equations (5) hold for any k& > u, then
the values F(z1,a1,q1),...,F(xs, as,qs) are algebraically dependent, which means that

the infinite set of the values F(Uy/Dyy) is algebraically dependent. Indeed, using (5)
and letting aiinRk =n (1 <i<s, k>u), we have

s u—1 2R u—1 k R
1 —aq™ F Tiq;"

§ CiH Rr (xiaaiaQi) o H 1 2R;
=1 k=1 Y% =1 1=1 + — %l



i=1 k=u l=u a;q;
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Next assume that the infinite set of the values F (Ua/ Doy ) is algebraically dependent.
Then there exist distinct orbits (x1, a1, q1), (x2, a2, q2), - - ., (Tr, ar, q,) € Us/ Doy such that

the values
ZqZ .
0; := F(x;, a4, q;) ZHI o (i=1....7)
=1 1=1 ~ %%

are algebraically dependent. Then there exist multiplicatively independent algebraic num-
bers By, ..., 0 with 0 < |f5;] <1 (1 <j <t) and a primitive N;-th root of unity ¢, which
may be different form the (y defined in Section 2, such that

= ]p a<i<r), (10)
j=1

where my, ..., m, are integers with 0 <m; < Ny —lande; (1 <i<r, 1<j<t)are
nonnegative integers not all zero (cf. Loxton and van der Poorten [2], Nishioka [4]). We
can choose a positive integer x and a sufficiently large integer u such that Ry.. = Ry
(mod Np) for any k > u+ 1, where u will be determined later. Let p = kN;. If necessary,
we replace p with its multiple such that all the entries of QY are positive, where € is
the matrix defined by (8). In fact, we can choose such a p. (For the proof see [5].) Let
yix (1 <j <t 1< X< n)be variables and let y; = (yj,...,ym) (1 < j < 1),
y=(yy,...,y,). Define

Sopy wCm e T, M(Qy)

) =>"11 t ; (1<i<r),
k=u l=u ]_ — Q; <CmiRl+1 Hj:l M(Qllyj)8“>
where M (z) is defined by (7). Letting 8= (1,...,1,51,...... 1, ..., 1, 8), we see by (9)
-1 n—1
and (10) that
oo k
xzq ZL‘Zq
fz(ﬁ)ZZH PR v 2R Z H — 1 _ 2R
e L S S L ag
and so
u Ry,
Tiq i
(2 ) ST
2R 2R,
<k:11_aiqZ k) el Sl 7

Since 64, .., 0, are algebraically dependent, so are f;(3) (1 <i <r). Let

O, = diag(Q2, ..., Q0).
——



Then, using the fact that Ry, = Ry (mod N;) for any & > u + 1, we see that each f;(y)
satisfies the functional equation

ptu—1 m:R t i ...

xzc Ik +1 H.: M(Q y) i

fiy) = | 1] j: 1Y, N o)
i 1 (G Ty M(2y )
+”+z“fl L g T, M(Qy)
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where Oy = (Ny,,...,Ny,). Let D = |det(Q; — E)|, where FE is the identity matrix.
Put M(D(Qy — E)1QFz) = 25®). By the condition that ®(—1) # 0, ®(2) < 0, and the
ratio of any pair of distinct roots of ®(X) is not a root of unity and by Remark 1.7, D
is a positive integer and there exists a sufficiently large integer u such that we have the
componentwise inequality among the vectors with integral components

D(Ru+n7---7Ru+1> > S(“) > 0. (11)

Changing the indices 7 if necessary, we may assume by Nishioka [4, p. 110, Theorem 3.5
and p. 115, Theorem 3.6.4], by [5, Lemma 4 and Proof of Theorem 2], by [6, Theorem 2],
and by Remark 1.7 that there exist a positive integer s < r, nonzero algebraic num-

bers My, ..., Mpru—1,&, and nonnegative integers ey, ..., e; such that for any i € {1,...,s}
we have q;(*mif+1 = g (u < k < p+u—1), (ei1,...,ex) = (e1,...,¢;) # 0, and
pP¢miFunttB) — ¢ and there exits a G(2) € Q(z1, ..., 2,) satisfying the functional
equation

B ptu—1 M(Qlfz)QDg .
Glz) = 5( I1 1_mM(Q,fZ>W> G(%2)

£8( )p+u_l - k—u+1 m; (R Rit1) - M(Qllz)m
_|_z— u sz—u‘l' mq u+1+"'+ k+1 ,
> (et i

k=u

k=u =1

where ( = Z;Zl ;) with v a sufficiently large positive integer, s(u) is as in (11), and
c1,...,Cs are algebraic numbers not all zero. Letting G(z) = A(z)/B(z), where A(z) and
B(z) are coprime polynomials in Q[z1,.. ., z,] with B # 0, we have
p+u—1
A(2)B(Q2)2"5™ T (1 - M (252)*")
k=u
p+u—1
= EA(Q2)B(2)2"5™ ] M(Qfz)*"
k=u
ptu-l / s k
+ 2 (Z cm()) B(2)B(f=) [ [ M(22)™"
k=u i=1 l=u
ptu—1

X H (l—nl/M QF )W). (12)

=k+1



We can put the greatest common divisor of A(Q¥z) and B(Q}2z) as 2/ where I(p) is an

n-dimensional vector with nonnegative integer components, by [4, Lemma 3.2.3]. Then
B(z) divides B(z)z!S+ @) TP M0k 2)2P by (12). Therefore B(z) is a monomial
in zy,...,2, by [6, Lemma 12] with Remark 1.7.

By (9) and (11) we see that 2 ---2,2/5® divides M(Q¥2)P*. Since p and u are
independent, the right-hand side of (12) is divisible by z; - - - 2,25 B(Q¥ 2) for sufficiently
large w and thus A(z) is divisible by 2; - - - z,. Since A(z) and B(z) are coprime, B(z) €
Q". If A(z) ¢ Q, then by [7, Lemma 6] and the fact that all the entries of Q¥ are positive,
degy A(Wz) > degy A(2z), which is a contradiction by comparing the total degrees of
both sides of (12). Hence A(z) € Q and so A(z) = 0 by comparing the coefficients of
23 the term of the smallest degree among the terms appearing in (12). Then again by
(12), we see that S°°_| ciat~ vt ¢milfurit-+R1) = 0 (u < k < p+u—1). Since Ry, = Ry,
(mod N;) for any k > u + 1, we have a,(*™ife+1 = g, (?mv Bt (K > o) for any i,i' €
{1,...,s}. Noting that p = kN7 with Ry, = Ry (mod Ny) for any k > u+1, we see that

k+p 1 Riy1 =0 (mod Ny) for any k> wand so Y Rij1 = kﬂ’k Ry 1 (mod Ny) for
any k: with u <k <p+wu—1and for all ¥ > 0. Hence > 7 ¢z f ““(ml RuprttRign) —
0 (k> u). By (10) with (e;1,...,ei) = (€1, .., en) we get aiq?R’““ = ay q,R’“+1 (k > w)
for any 7,7 € {1,...,s} and Zl or “JrlqR“+1+ H — 0 (k> ). This completes the

1

proof of the theorem. O
Sketch of the proof of Main Theorem 2.3. Choosing a suitable complete set of repre-
sentatives of the orbits Uy /Dy, we can prove the theorem. O
References

[1] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University
Press, Cambridge, 1990.

[2] J. H. Loxton and A. J. van der Poorten, Algebraic independence properties of the
Fredholm series, J. Austral. Math. Soc. Ser. A 26 (1978), 31-45.

[3] K. Nishioka, Conditions for algebraic independence of certain power series of alge-
braic numbers, Compositio Math. 62 (1987), 53-61.

[4] K. Nishioka, Mahler functions and transcendence, Lecture Notes in Mathematics No.
1631, Springer, 1996.

[5] T. Tanaka, Algebraic independence of the values of power series generated by linear
recurrences, Acta Arith. 74 (1996), 177-190.

[6] T. Tanaka, Algebraic independence results related to linear recurrences, Osaka J.
Math. 36 (1999), 203-227.

[7] T. Tanaka, Algebraic independence of the values of Mahler functions associated with
a certain continued fraction expansion, J. Number Theory 105 (2004), 38-48.

[8] T. Tanaka, Conditions for the algebraic independence of certain series involving con-
tinued fractions and generated by linear recurrences, J. Number Theory 129 (2009),
3081-3093.

9] T. Tanaka, Algebraic independence of the wvalues of a certain map defined on the

set of orbits of the action of Klein four-group, ZIEMRATHSTARAAZTEE 2131 (2019),
177-187.



