Algebraic independence of the values of a certain function invariant under the action of the dihedral group

慶應義塾大学理工学部 田中 孝明(Taka-aki Tanaka) Faculty of Science and Technology, Keio Univ.

1 Introduction

Liouville series $L(z) = \sum_{k=0}^{\infty} z^{k!}$ is known to have the following property:

Theorem 1.1 (Nishioka [3]). Let q_1, \ldots, q_r be algebraic numbers with $0 < |q_i| < 1$ $(1 \le i \le r)$. Then the values $L(q_1), \ldots, L(q_r)$ are algebraically dependent if and only if there exist i, j with $1 \le i < j \le r$ such that q_i/q_j is a root of unity.

In what follows, $\overline{\mathbb{Q}}^{\times}$ denotes the set of nonzero algebraic numbers. Let $D = \{z \in \mathbb{C} \mid |z| < 1\}$ and let μ_{∞} be the multiplicative group consisting of all the roots of unity. Theorem 1.1 means that the points of $D \cap \overline{\mathbb{Q}}^{\times}$ at which L(z) takes algebraically dependent values lie on the same orbit under the action of the group μ_{∞} defined by $\mu_{\infty} \times D \ni (\zeta, z) \to \zeta z \in D$.

Although μ_{∞} is an infinite group, in this paper we consider the functions of several variables with the following property: The points at which such a function takes the same value always lie on the identical orbit under the action of a finite group including non-commutative one, except trivial cases such as $f(X,Y) = g(X^N,Y^N)$ with the multiplicative action of the cyclic group $G = \langle (\zeta_N, \zeta_N) \rangle$, where ζ_N is a primitive N-th root of unity. Let $\{R_k\}_{k\geq 1}$ be a linear recurrence of positive integers satisfying

$$R_{k+n} = c_1 R_{k+n-1} + \dots + c_n R_k \quad (k \ge 1),$$
(1)

where $n \ge 2$ and c_1, \ldots, c_n are nonnegative integers with $c_n \ne 0$. In this paper we assume that g.c.d. $(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ for all $k \ge 1$ to exclude the trivial case above. The author [8] studied the two-variable function E(x, q) defined by

$$E(x,q) = \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{xq^{R_l}}{1-q^{R_l}} = \sum_{k=1}^{\infty} \frac{x^k q^{R_1+R_2+\dots+R_k}}{(1-q^{R_1})(1-q^{R_2})\cdots(1-q^{R_k})},$$

which may be regarded as an analogue of q-exponential function

$$E_q(x) = 1 + \sum_{k=1}^{\infty} \frac{x^k q^{1+2+\dots+k}}{(1-q)(1-q^2)\cdots(1-q^k)}$$

(cf. Gasper and Rahman [1]), if we replace k in the exponent of q in $E_q(x)$ with $\{R_k\}_{k\geq 1}$ defined by (1). Let

$$\Phi(X) = X^n - c_1 X^{n-1} - \dots - c_n.$$

The author proved the following:

Theorem 1.2 (Corollary 4 of [8]). Let $\{R_k\}_{k\geq 1}$ be a linear recurrence satisfying (1). Suppose that $\Phi(\pm 1) \neq 0$ and that the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity. Assume that g.c.d. $(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ for all $k \geq 1$. Then the infinite set of the values

$$\left\{ E(x,q) \mid x,q \in \overline{\mathbb{Q}}^{\times}, |q| < 1 \right\}$$

is algebraically independent.

Remark 1.3. It is shown in Remark 2 of [5] that, if $\Phi(\pm 1) \neq 0$ and if the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity, then the $\{R_k\}_{k\geq 1}$ defined by (1) is expressed as $R_k = c\rho^k + o(\rho^k)$ with c > 0 and $\rho > 1$, which guarantees the convergence of the series E(x, q).

Remark 1.4. The condition that g.c.d. $(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ for all $k \ge 1$ implies that the sequence $\{R_k\}_{k\ge 1}$ is not a geometric progression, which is a technically inevitable condition for the values E(x,q) to be treated as special values of Mahler functions of several variables similarly to our poof in Section 3.

Example 1.5. Let $\{F_k\}_{k\geq 1}$ be the sequence of Fibonacci numbers defined by $F_1 = F_2 = 1$ and $F_{k+2} = F_{k+1} + F_k$ $(k \geq 1)$. Since $\{F_k\}_{k\geq 1}$ satisfies all the conditions of Theorem 1.2, the infinite set of the values

$$\left\{\sum_{k=1}^{\infty} \frac{x^k q^{F_1 + F_2 + \dots + F_k}}{(1 - q^{F_1})(1 - q^{F_2}) \cdots (1 - q^{F_k})} \; \middle| \; x, q \in \overline{\mathbb{Q}}^{\times}, \; |q| < 1\right\}$$

is algebraically independent.

Since $R_k = c\rho^k + o(\rho^k)$ with c > 0 and $\rho > 1$ by Remak 1.3, the two-variable function E(x,q) converges on the domain

$$(\mathbb{C} \times \{|q| < 1\}) \cup (\{|x| < 1\} \times \{|q| > 1\}) := \{(x, q) \in \mathbb{C}^2 \mid |q| < 1 \lor (|x| < 1 \land |q| > 1)\},\$$

whereas a 'balanced' analogue

$$\Theta(x,q) = \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{xq^{R_l}}{1-q^{2R_l}} = \sum_{k=1}^{\infty} \frac{x^k q^{R_1+R_2+\dots+R_k}}{(1-q^{2R_1})(1-q^{2R_2})\cdots(1-q^{2R_k})}$$

converges on the wider domain

$$\mathbb{C} \times \{ |q| \neq 1 \} := \{ (x,q) \in \mathbb{C}^2 \mid |q| \neq 1 \}.$$

Indeed, if $q \neq 0$, then $\Theta(x,q)$ is invariant under the map

$$\sigma_1 : (x,q) \longmapsto (-x,q^{-1}),$$

namely

$$\Theta(\sigma_1(x,q)) = \sum_{k=1}^{\infty} \frac{(-x)^k q^{-R_1 - R_2 - \dots - R_k}}{(1 - q^{-2R_1})(1 - q^{-2R_2}) \cdots (1 - q^{-2R_k})} = \Theta(x,q)$$

and so $\Theta(x,q)$ converges on $\mathbb{C} \times \{|q| \neq 1\}$ by the similar reason to the convergence of E(x,q) on $\mathbb{C} \times \{|q| < 1\}$.

Moreover, if $\{R_k\}_{k\geq 1}$ is a sequence of odd integers, then $\Theta(x,q)$ is invariant also under the maps

$$\sigma_2 : (x,q) \longmapsto (-x,-q) \quad \text{and} \quad \sigma_3 : (x,q) \longmapsto (x,-q^{-1}).$$

Since $\sigma_1 \circ \sigma_1 = \sigma_2 \circ \sigma_2 = \text{id}$ and $\sigma_1 \circ \sigma_2 = \sigma_2 \circ \sigma_1 = \sigma_3$, we see that $G_4 = \{\text{id}, \sigma_1, \sigma_2, \sigma_3\}$ is Klein four-group. Therefore, $\Theta(x,q)$ can be regarded as a map defined on the set of orbits $(\mathbb{C} \times \{|q| \neq 0, 1\})/G_4$, where $\mathbb{C} \times \{|q| \neq 0, 1\} = \{(x,q) \in \mathbb{C}^2 \mid |q| \neq 0, 1\}$, namely the map

$$\Theta : (\mathbb{C} \times \{ |q| \neq 0, 1 \}) / G_4 \longrightarrow \Theta(\mathbb{C} \times \{ |q| \neq 0, 1 \})$$

given by

$$\overline{(x,q)}\longmapsto \Theta(x,q),$$

where (x,q) denotes the orbit represented by (x,q), is a well-defined surjection. Hence the restriction to algebraic points

$$\widetilde{\Theta}: \left(\left(\mathbb{C} \times \{ |q| \neq 0, 1 \} \right) \cap \left(\overline{\mathbb{Q}}^{\times} \right)^2 \right) \middle/ G_4 \longrightarrow \Theta \left(\left(\mathbb{C} \times \{ |q| \neq 0, 1 \} \right) \cap \left(\overline{\mathbb{Q}}^{\times} \right)^2 \right),$$

or equivalently

$$\widetilde{\Theta}: \left(\overline{\mathbb{Q}}^{\times} \times (\overline{\mathbb{Q}}^{\times} \setminus \{|q|=1\})\right) / G_4 \longrightarrow \Theta\left(\overline{\mathbb{Q}}^{\times} \times (\overline{\mathbb{Q}}^{\times} \setminus \{|q|=1\})\right)$$

is also a well-defined surjection. The author proved the following:

Theorem 1.6 (Theorem 1 of [9]). Let $\{R_k\}_{k\geq 1}$ be a linear recurrence satisfying (1). Suppose that $\Phi(-1) \neq 0$, $\Phi(2) < 0$, and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity. Assume that g.c.d. $(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ for all $k \geq 1$. Assume further that $\{R_k\}_{k\geq 1}$ is a sequence of odd integers. Then the infinite set of the values

$$\widetilde{\Theta}\left(\left(\overline{\mathbb{Q}}^{\times} \times (\overline{\mathbb{Q}}^{\times} \setminus \{|q|=1\})\right) \middle/ G_4\right)$$

is algebraically independent.

Remark 1.7. It is easily seen that $\Phi(2) < 0$ implies that $\Phi(1) \neq 0$.

Corollary 1.8. Let $\{R_k\}_{k\geq 1}$ be as in Theorem 1.6. Then the infinite set of the values

$$\left\{\sum_{k=1}^{\infty} \frac{x^k q^{R_1 + R_2 + \dots + R_k}}{(1 - q^{2R_1})(1 - q^{2R_2}) \cdots (1 - q^{2R_k})} \mid x, q \in \overline{\mathbb{Q}}^{\times}, \ |q| \neq 1\right\}$$

is a '4-fold' algebraically independent set, namely in this set each value appears 4 times and the infinite set consisting of all the distinct values of this set is algebraically independent.

Example 1.9. Let $\{P_k\}_{k\geq 1}$ be the sequence defined by $P_1 = P_2 = 1$ and $P_{k+2} = 2P_{k+1} + P_k$ $(k \geq 1)$. Since $\{P_k\}_{k\geq 1}$ satisfies all the conditions of Theorem 1.6, the infinite set of the values

$$\left\{\sum_{k=1}^{\infty} \frac{x^k q^{P_1 + P_2 + \dots + P_k}}{(1 - q^{2P_1})(1 - q^{2P_2}) \cdots (1 - q^{2P_k})} \middle| x, q \in \overline{\mathbb{Q}}^{\times}, |q| \neq 1\right\}$$

is a '4-fold' algebraically independent set.

2 Main results

The three-variable function

$$\mathcal{F}(x,a,q) = \sum_{k=1}^{\infty} \prod_{l=1}^{k} \frac{xq^{R_l}}{1 - aq^{2R_l}} = \sum_{k=1}^{\infty} \frac{x^k q^{R_1 + R_2 + \dots + R_k}}{(1 - aq^{2R_1})(1 - aq^{2R_2}) \cdots (1 - aq^{2R_k})}$$
(2)

converges on the domain

$$U := \{ (x, a, q) \in \mathbb{C}^3 \mid |q| < 1, \ aq^{2R_k} \neq 1 \text{ for any } k \ge 1 \}$$
$$\cup \{ (x, a, q) \in \mathbb{C}^3 \mid a \neq 0, \ |q| > 1, \ aq^{2R_k} \neq 1 \text{ for any } k \ge 1 \}.$$

If $a, q \neq 0$, then $\mathcal{F}(x, a, q)$ is invariant under the map

$$\tau : (x, a, q) \longmapsto (-a^{-1}x, a^{-1}, q^{-1}),$$
(3)

namely

$$\mathcal{F}(\tau(x,a,q)) = \sum_{k=1}^{\infty} \frac{(-1)^k a^{-k} x^k q^{-R_1 - R_2 - \dots - R_k}}{(1 - a^{-1} q^{-2R_1})(1 - a^{-1} q^{-2R_2}) \cdots (1 - a^{-1} q^{-2R_k})} = \mathcal{F}(x,a,q).$$

Here and hereafter, N denotes an integer greater than 1. Let ζ_N be a primitive N-th root of unity and let $\delta \in \{1, \ldots, N-1\}$ be such that g.c.d. $(\delta, N) = 1$. If $R_k \equiv \delta \pmod{N}$ for all $k \geq 1$, then $\mathcal{F}(x, a, q)$ is invariant also under the map

$$\sigma : (x, a, q) \longmapsto (\zeta_N^{-\delta} x, \zeta_N^{-2\delta} a, \zeta_N q),$$
(4)

namely $\mathcal{F}(\sigma(x, a, q)) = \mathcal{F}(x, a, q)$. In what follows, we denote by σ^i and $\sigma\tau$ the compositions of maps $\underbrace{\sigma \circ \cdots \circ \sigma}_{i}$ and $\sigma \circ \tau$, respectively. By (3) and (4) we have $\sigma^N = \tau^2 = \mathrm{id}$,

$$\begin{aligned} \sigma^2 : (x, a, q) &\longmapsto \left(\zeta_N^{-2\delta} x, \zeta_N^{-4\delta} a, \zeta_N^2 q\right), \dots, \sigma^{N-1} : (x, a, q) &\longmapsto \left(\zeta_N^{\delta} x, \zeta_N^{2\delta} a, \zeta_N^{-1} q\right), \\ \sigma\tau : (x, a, q) &\longmapsto \left(-\zeta_N^{-\delta} a^{-1} x, \zeta_N^{-2\delta} a^{-1}, \zeta_N q^{-1}\right), \\ \sigma^2\tau : (x, a, q) &\longmapsto \left(-\zeta_N^{-2\delta} a^{-1} x, \zeta_N^{-4\delta} a^{-1}, \zeta_N^2 q^{-1}\right), \end{aligned}$$

and

$$\sigma^{N-1}\tau = \tau\sigma$$
 : $(x, a, q) \longmapsto (-\zeta_N^{\delta} a^{-1} x, \zeta_N^{2\delta} a^{-1}, \zeta_N^{-1} q^{-1}).$

÷

Hence {id, σ , σ^2 ,..., σ^{N-1} , τ , $\sigma\tau$, $\sigma^2\tau$,..., $\sigma^{N-1}\tau$ } is isomorphic to the dihedral group D_{2N} of order 2N. Since the equation $aq^{2R_k} = 1$ is invariant under σ and τ , the dihedral group D_{2N} acts on the set

$$U^* := \{ (x, a, q) \in \mathbb{C}^3 \mid aq^{2R_k} \neq 1 \text{ for any } k \ge 1, \ a \ne 0, \ |q| \ne 0, 1 \}.$$

Therefore, $\mathcal{F}(x, a, q)$ can be regarded as a map defined on the set of orbits U^*/D_{2N} , namely the map

$$\widetilde{\mathcal{F}} : U^*/D_{2N} \longrightarrow \mathcal{F}(U^*)$$

given by

$$\overline{(x,a,q)}\longmapsto \mathcal{F}(x,a,q),$$

where (x, a, q) denotes the orbit represented by (x, a, q), is a well-defined surjection. In other words, the image of the function $\mathcal{F}(x, a, q)$ is a 2N-fold cover. Hence the restriction to algebraic points

$$\widetilde{\mathcal{F}} : U_{\mathcal{A}}/D_{2N} \longrightarrow \mathcal{F}(U_{\mathcal{A}}),$$

is also a well-defined surjection, where

$$U_{\mathcal{A}} = U^* \cap \left(\overline{\mathbb{Q}}^\times\right)^3 = \{(x, a, q) \mid x, a, q \in \overline{\mathbb{Q}}^\times, aq^{2R_k} \neq 1 \text{ for any } k \ge 1, |q| \neq 1\}.$$

In this paper we prove the following:

Main Theorem 2.1. Let $\{R_k\}_{k\geq 1}$ be a linear recurrence satisfying (1) and let $\delta \in \{1, \ldots, N-1\}$ be such that g.c.d. $(\delta, N) = 1$. Suppose that $\Phi(-1) \neq 0$, $\Phi(2) < 0$, and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity. Assume that g.c.d. $(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ and $R_k \equiv \delta \pmod{N}$ for all $k \geq 1$. Then the infinite set of the values $\widetilde{\mathcal{F}}(U_A/D_{2N})$ is algebraically dependent if and only if there exist distinct orbits $\overline{(x_1, a_1, q_1)}, \ldots, \overline{(x_s, a_s, q_s)} \in U_A/D_{2N}$, algebraic numbers c_1, \ldots, c_s , not all zero, and a sufficiently large positive integer u such that, for any $k \geq u$,

$$a_1 q_1^{2R_k} = a_i q_i^{2R_k} \quad (2 \le i \le s) \qquad and \qquad \sum_{i=1}^s c_i x_i^{k-u+1} q_i^{R_u + \dots + R_k} = 0.$$
 (5)

Remark 2.2. The equations (5) depend only on the orbits (x_i, a_i, q_i) but not on the choice of the representatives (x_i, a_i, q_i) , namely, under the action of the dihedral group D_{2N} , the equations (5) are invariant.

Main Theorem 2.3. Let $\{R_k\}_{k\geq 1}$ be a linear recurrence satisfying (1), let N be an odd integer, and let $\delta \in \{1, \ldots, N-1\}$ be such that $g.c.d.(\delta, N) = 1$. Suppose that $R_k \equiv \delta \pmod{N}$ and $g.c.d.(R_{k+1} - R_k, R_{k+2} - R_{k+1}, \ldots, R_{k+n} - R_{k+n-1}) =$ N for all $k \geq 1$. Assume that $\Phi(-1) \neq 0$, $\Phi(2) < 0$, and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity. Then the infinite set of the values $\widetilde{\mathcal{F}}(U_A/D_{2N})$ is algebraically dependent if and only if there exist distinct orbits $\overline{(x_1, a, q)}, \ldots, \overline{(x_s, a, q)}, \overline{(x_{s+1}, a, -q)}, \ldots, \overline{(x_{s+t}, a, -q)} \in U_A/D_{2N}$, algebraic numbers c_1, \ldots, c_{s+t} , not all zero, and a sufficiently large positive integer u such that, for any $k \geq u$,

$$\sum_{i=1}^{s} c_i x_i^{k-u+1} + \sum_{i=s+1}^{s+t} c_i (-1)^{R_u + \dots + R_k} x_i^{k-u+1} = 0.$$

Remark 2.4. The condition of Main Theorem 2.3 that $R_k \equiv \delta \pmod{N}$ and g.c.d. $(R_{k+1} - R_k, R_{k+2} - R_{k+1}, \ldots, R_{k+n} - R_{k+n-1}) = N$ for all $k \geq 1$ implies that g.c.d. $(R_k, R_{k+1}, \ldots, R_{k+n-1}) = 1$ for all $k \geq 1$.

Example 2.5. Let $\{R_k\}_{k\geq 1}$ be the sequence defined by $R_1 = R_2 = 1$ and $R_{k+2} = NR_{k+1} + R_k$ $(k \geq 1)$, where $N \geq 3$ is an odd integer. Then $\{R_k\}_{k\geq 1}$ satisfies all the conditions of Main Theorem 2.3 and the infinite set consisting of the distinct values of

$$\left\{\sum_{k=1}^{\infty} \frac{x^k q^{R_1 + R_2 + \dots + R_k}}{(1 - aq^{2R_1})(1 - aq^{2R_2}) \cdots (1 - aq^{2R_k})} \middle| x, a, q \in \overline{\mathbb{Q}}^{\times}, \ aq^{2R_k} \neq 1 \ (k \ge 1), \ |q| \neq 1 \right\}$$

is algebraically dependent. In fact, there exists the linear relation

$$\mathcal{F}(x,a,q) - 2\zeta_3^2 \mathcal{F}(\zeta_3 x, a, q) - 2\zeta_3 \mathcal{F}(\zeta_3^2 x, a, q) - 3\mathcal{F}(x, a, -q) = 0$$

holds for $\mathcal{F}(x, a, q)$ of the form (2). Note that $\overline{(x, a, q)}, \overline{(\zeta_3 x, a, q)}, \overline{(\zeta_3^2 x, a, q)}$, and $\overline{(x, a, -q)}$ are the distinct orbits of $U_{\mathcal{A}}/D_{2N}$, since $\mathcal{F}(x, a, q), \mathcal{F}(\zeta_3 x, a, q), \mathcal{F}(\zeta_3^2 x, a, q)$, and $\mathcal{F}(x, a, -q)$ are distinct as series in x, a, and q. Moreover, by Main Theorem 2.3 we have

trans. deg_Q
$$\mathbb{Q}\left(\mathcal{F}(x, a, q), \mathcal{F}(\zeta_3 x, a, q), \mathcal{F}(\zeta_3^2 x, a, q), \mathcal{F}(x, a, -q)\right) = 3$$

or more precisely, any three of the numbers $\mathcal{F}(x, a, q), \mathcal{F}(\zeta_3 x, a, q), \mathcal{F}(\zeta_3^2 x, a, q)$, and $\mathcal{F}(x, a, -q)$ are algebraically independent.

3 Proof of the main theorems

Let $\Omega = (\omega_{ij})$ be an $n \times n$ matrix with nonnegative integer entries, where n is as in (1). We define a multiplicative transformation $\Omega \colon \mathbb{C}^n \to \mathbb{C}^n$ by

$$\Omega \boldsymbol{z} = \left(\prod_{j=1}^{n} z_j^{\omega_{1j}}, \prod_{j=1}^{n} z_j^{\omega_{2j}}, \dots, \prod_{j=1}^{n} z_j^{\omega_{nj}}\right)$$
(6)

for any $\boldsymbol{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n$. Then $\Omega(\Omega^k \boldsymbol{z}) = \Omega^{k+1} \boldsymbol{z}$ $(k = 0, 1, 2, \ldots)$. Let $\{R_k\}_{k \geq 1}$ be a linear recurrence satisfying (1) and define a monomial

$$M(\boldsymbol{z}) = z_1^{R_n} \cdots z_n^{R_1}.$$
(7)

Let

$$\Omega_{1} = \begin{pmatrix} c_{1} & 1 & 0 & \dots & 0 \\ c_{2} & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & 1 \\ c_{n} & 0 & \dots & \dots & 0 \end{pmatrix}.$$
(8)

It follows from (1), (6), and (7) that

$$M(\Omega_1^k \boldsymbol{z}) = z_1^{R_{k+n}} \cdots z_n^{R_{k+1}} \quad (k \ge 0).$$
(9)

Sketch of the proof of Main Theorem 2.1. First we prove that, if there exist distinct orbits $\overline{(x_1, a_1, q_1)}, \ldots, \overline{(x_s, a_s, q_s)} \in U_{\mathcal{A}}/D_{2N}$, algebraic numbers c_1, \ldots, c_s , not all zero, and a sufficiently large positive integer u such that the equations (5) hold for any $k \geq u$, then the values $\mathcal{F}(x_1, a_1, q_1), \ldots, \mathcal{F}(x_s, a_s, q_s)$ are algebraically dependent, which means that the infinite set of the values $\widetilde{\mathcal{F}}(U_{\mathcal{A}}/D_{2N})$ is algebraically dependent. Indeed, using (5) and letting $a_i q_i^{2R_k} = \eta_k$ $(1 \leq i \leq s, k \geq u)$, we have

$$\sum_{i=1}^{s} c_i \prod_{k=1}^{u-1} \frac{1 - a_i q_i^{2R_k}}{x_i q_i^{R_k}} \left(\mathcal{F}(x_i, a_i, q_i) - \sum_{k=1}^{u-1} \prod_{l=1}^{k} \frac{x_i q_i^{R_l}}{1 - a_i q_i^{2R_l}} \right)$$

$$= \sum_{i=1}^{s} c_{i} \sum_{k=u}^{\infty} \prod_{l=u}^{k} \frac{x_{i} q_{i}^{R_{l}}}{1 - a_{i} q_{i}^{2R_{l}}}$$

$$= \sum_{k=u}^{\infty} \sum_{i=1}^{s} c_{i} \frac{\prod_{l=u}^{k} x_{i} q_{i}^{R_{l}}}{\prod_{l=u}^{k} (1 - \eta_{l})} = \sum_{k=u}^{\infty} \frac{\sum_{i=1}^{s} c_{i} x_{i}^{k-u+1} q_{i}^{R_{u}+\dots+R_{k}}}{\prod_{l=u}^{k} (1 - \eta_{l})} = 0$$

Next assume that the infinite set of the values $\widetilde{\mathcal{F}}(U_{\mathcal{A}}/D_{2N})$ is algebraically dependent. Then there exist distinct orbits $\overline{(x_1, a_1, q_1)}, \overline{(x_2, a_2, q_2)}, \ldots, \overline{(x_r, a_r, q_r)} \in U_{\mathcal{A}}/D_{2N}$ such that the values

$$\theta_i := \mathcal{F}(x_i, a_i, q_i) = \sum_{k=1}^{\infty} \prod_{l=1}^k \frac{x_i q_i^{R_l}}{1 - a_i q_i^{2R_l}} \quad (i = 1, \dots, r)$$

are algebraically dependent. Then there exist multiplicatively independent algebraic numbers β_1, \ldots, β_t with $0 < |\beta_j| < 1$ $(1 \le j \le t)$ and a primitive N_1 -th root of unity ζ , which may be different form the ζ_N defined in Section 2, such that

$$q_i = \zeta^{m_i} \prod_{j=1}^t \beta_j^{e_{ij}} \quad (1 \le i \le r),$$
 (10)

where m_1, \ldots, m_r are integers with $0 \le m_i \le N_1 - 1$ and e_{ij} $(1 \le i \le r, 1 \le j \le t)$ are nonnegative integers not all zero (cf. Loxton and van der Poorten [2], Nishioka [4]). We can choose a positive integer κ and a sufficiently large integer u such that $R_{k+\kappa} \equiv R_k$ (mod N_1) for any $k \ge u+1$, where u will be determined later. Let $p = \kappa N_1$. If necessary, we replace p with its multiple such that all the entries of Ω_1^p are positive, where Ω_1 is the matrix defined by (8). In fact, we can choose such a p. (For the proof see [5].) Let $y_{j\lambda}$ $(1 \le j \le t, 1 \le \lambda \le n)$ be variables and let $\mathbf{y}_j = (y_{j1}, \ldots, y_{jn})$ $(1 \le j \le t),$ $\mathbf{y} = (\mathbf{y}_1, \ldots, \mathbf{y}_t)$. Define

$$f_{i}(\boldsymbol{y}) = \sum_{k=u}^{\infty} \prod_{l=u}^{k} \frac{x_{i} \zeta^{m_{i}R_{l+1}} \prod_{j=1}^{t} M(\Omega_{1}^{l} \boldsymbol{y}_{j})^{e_{ij}}}{1 - a_{i} \left(\zeta^{m_{i}R_{l+1}} \prod_{j=1}^{t} M(\Omega_{1}^{l} \boldsymbol{y}_{j})^{e_{ij}} \right)^{2}} \quad (1 \le i \le r),$$

where $M(\mathbf{z})$ is defined by (7). Letting $\boldsymbol{\beta} = (\underbrace{1, \dots, 1}_{n-1}, \beta_1, \dots, \underbrace{1, \dots, 1}_{n-1}, \beta_t)$, we see by (9) and (10) that

$$f_i(\boldsymbol{\beta}) = \sum_{k=u}^{\infty} \prod_{l=u}^k \frac{x_i q_i^{R_{l+1}}}{1 - a_i q_i^{2R_{l+1}}} = \sum_{k=u+1}^{\infty} \prod_{l=u+1}^k \frac{x_i q_i^{R_l}}{1 - a_i q_i^{2R_l}}$$

and so

$$\theta_i = \left(\prod_{k=1}^u \frac{x_i q_i^{R_k}}{1 - a_i q_i^{2R_k}}\right) f_i(\beta) + \sum_{k=1}^u \prod_{l=1}^k \frac{x_i q_i^{R_l}}{1 - a_i q_i^{2R_l}}$$

Since $\theta_1, \ldots, \theta_r$ are algebraically dependent, so are $f_i(\beta)$ $(1 \le i \le r)$. Let

$$\Omega_2 = \operatorname{diag}(\underbrace{\Omega_1^p, \ldots, \Omega_1^p}_t).$$

Then, using the fact that $R_{k+p} \equiv R_k \pmod{N_1}$ for any $k \ge u+1$, we see that each $f_i(\boldsymbol{y})$ satisfies the functional equation

$$f_{i}(\boldsymbol{y}) = \left(\prod_{k=u}^{p+u-1} \frac{x_{i} \zeta^{m_{i}R_{k+1}} \prod_{j=1}^{t} M(\Omega_{1}^{k} \boldsymbol{y}_{j})^{e_{ij}}}{1 - a_{i} \left(\zeta^{m_{i}R_{k+1}} \prod_{j=1}^{t} M(\Omega_{1}^{k} \boldsymbol{y}_{j})^{e_{ij}} \right)^{2}} \right) f_{i}(\Omega_{2} \boldsymbol{y}) + \sum_{k=u}^{p+u-1} \prod_{l=u}^{k} \frac{x_{i} \zeta^{m_{i}R_{l+1}} \prod_{j=1}^{t} M(\Omega_{1}^{l} \boldsymbol{y}_{j})^{e_{ij}}}{1 - a_{i} \left(\zeta^{m_{i}R_{l+1}} \prod_{j=1}^{t} M(\Omega_{1}^{l} \boldsymbol{y}_{j})^{e_{ij}} \right)^{2}},$$

where $\Omega_2 \boldsymbol{y} = (\Omega_1^p \boldsymbol{y}_1, \dots, \Omega_1^p \boldsymbol{y}_t)$. Let $D = |\det(\Omega_1 - E)|$, where E is the identity matrix. Put $M(D(\Omega_1 - E)^{-1}\Omega_1^k \boldsymbol{z}) = \boldsymbol{z}^{\boldsymbol{s}(k)}$. By the condition that $\Phi(-1) \neq 0$, $\Phi(2) < 0$, and the ratio of any pair of distinct roots of $\Phi(X)$ is not a root of unity and by Remark 1.7, D is a positive integer and there exists a sufficiently large integer u such that we have the componentwise inequality among the vectors with integral components

$$D(R_{u+n}, \dots, R_{u+1}) > \mathbf{s}(u) > \mathbf{0}.$$
 (11)

Changing the indices *i* if necessary, we may assume by Nishioka [4, p. 110, Theorem 3.5 and p. 115, Theorem 3.6.4], by [5, Lemma 4 and Proof of Theorem 2], by [6, Theorem 2], and by Remark 1.7 that there exist a positive integer $s \leq r$, nonzero algebraic numbers $\eta_u, \ldots, \eta_{p+u-1}, \xi$, and nonnegative integers e_1, \ldots, e_t such that for any $i \in \{1, \ldots, s\}$ we have $a_i \zeta^{2m_i R_{k+1}} = \eta_k$ ($u \leq k \leq p + u - 1$), $(e_{i1}, \ldots, e_{it}) = (e_1, \ldots, e_t) \neq \mathbf{0}$, and $x_i^p \zeta^{m_i(R_{u+1}+\cdots+R_{p+u})} = \xi$, and there exits a $G(\mathbf{z}) \in \overline{\mathbb{Q}}(z_1, \ldots, z_n)$ satisfying the functional equation

$$G(\boldsymbol{z}) = \xi \left(\prod_{k=u}^{p+u-1} \frac{M(\Omega_{1}^{k} \boldsymbol{z})^{2D\ell}}{1 - \eta_{k} M(\Omega_{1}^{k} \boldsymbol{z})^{2D\ell}} \right) G(\Omega_{1}^{p} \boldsymbol{z}) + \boldsymbol{z}^{-\ell \boldsymbol{S}(u)} \sum_{k=u}^{p+u-1} \left(\sum_{i=1}^{s} c_{i} x_{i}^{k-u+1} \zeta^{m_{i}(R_{u+1}+\dots+R_{k+1})} \right) \prod_{l=u}^{k} \frac{M(\Omega_{1}^{l} \boldsymbol{z})^{D\ell}}{1 - \eta_{l} M(\Omega_{1}^{l} \boldsymbol{z})^{2D\ell}},$$

where $\ell = \sum_{j=1}^{t} e_j \nu^j$ with ν a sufficiently large positive integer, $\mathbf{s}(u)$ is as in (11), and c_1, \ldots, c_s are algebraic numbers not all zero. Letting $G(\mathbf{z}) = A(\mathbf{z})/B(\mathbf{z})$, where $A(\mathbf{z})$ and $B(\mathbf{z})$ are coprime polynomials in $\overline{\mathbb{Q}}[z_1, \ldots, z_n]$ with $B \neq 0$, we have

$$A(\boldsymbol{z})B(\Omega_{1}^{p}\boldsymbol{z})\boldsymbol{z}^{\ell\boldsymbol{S}(u)}\prod_{k=u}^{p+u-1} \left(1 - \eta_{k}M(\Omega_{1}^{k}\boldsymbol{z})^{2D\ell}\right)$$

$$= \xi A(\Omega_{1}^{p}\boldsymbol{z})B(\boldsymbol{z})\boldsymbol{z}^{\ell\boldsymbol{S}(u)}\prod_{k=u}^{p+u-1}M(\Omega_{1}^{k}\boldsymbol{z})^{2D\ell}$$

$$+ \sum_{k=u}^{p+u-1} \left(\sum_{i=1}^{s} c_{i}x_{i}^{k-u+1}\zeta^{m_{i}(R_{u+1}+\dots+R_{k+1})}\right)B(\boldsymbol{z})B(\Omega_{1}^{p}\boldsymbol{z})\prod_{l=u}^{k}M(\Omega_{1}^{l}\boldsymbol{z})^{D\ell}$$

$$\times \prod_{l'=k+1}^{p+u-1} \left(1 - \eta_{l'}M(\Omega_{1}^{l'}\boldsymbol{z})^{2D\ell}\right).$$
(12)

We can put the greatest common divisor of $A(\Omega_1^p \boldsymbol{z})$ and $B(\Omega_1^p \boldsymbol{z})$ as $\boldsymbol{z}^{I(p)}$, where I(p) is an *n*-dimensional vector with nonnegative integer components, by [4, Lemma 3.2.3]. Then $B(\Omega_1^p \boldsymbol{z})$ divides $B(\boldsymbol{z})\boldsymbol{z}^{\ell \boldsymbol{s}(u)+I(p)} \prod_{k=u}^{p+u-1} M(\Omega_1^k \boldsymbol{z})^{2D\ell}$ by (12). Therefore $B(\boldsymbol{z})$ is a monomial in z_1, \ldots, z_n by [6, Lemma 12] with Remark 1.7.

By (9) and (11) we see that $z_1 \cdots z_n \boldsymbol{z}^{\ell \boldsymbol{S}^{(u)}}$ divides $M(\Omega_1^u \boldsymbol{z})^{D\ell}$. Since p and u are independent, the right-hand side of (12) is divisible by $z_1 \cdots z_n \boldsymbol{z}^{\ell \boldsymbol{S}^{(u)}} B(\Omega_1^p \boldsymbol{z})$ for sufficiently large u and thus $A(\boldsymbol{z})$ is divisible by $z_1 \cdots z_n$. Since $A(\boldsymbol{z})$ and $B(\boldsymbol{z})$ are coprime, $B(\boldsymbol{z}) \in \overline{\mathbb{Q}}^{\times}$. If $A(\boldsymbol{z}) \notin \overline{\mathbb{Q}}$, then by [7, Lemma 6] and the fact that all the entries of Ω_1^p are positive, deg $\boldsymbol{z} A(\Omega_1^p \boldsymbol{z}) > \deg_{\boldsymbol{z}} A(\boldsymbol{z})$, which is a contradiction by comparing the total degrees of both sides of (12). Hence $A(\boldsymbol{z}) \in \overline{\mathbb{Q}}$ and so $A(\boldsymbol{z}) = 0$ by comparing the coefficients of $\boldsymbol{z}^{\ell \boldsymbol{S}^{(u)}}$, the term of the smallest degree among the terms appearing in (12). Then again by (12), we see that $\sum_{i=1}^{s} c_i x_i^{k-u+1} \zeta^{m_i(R_{u+1}+\dots+R_{k+1})} = 0$ ($u \leq k \leq p+u-1$). Since $R_{k+p} \equiv R_k$ (mod N_1) for any $k \geq u+1$, we have $a_i \zeta^{2m_i R_{k+1}} = a_{i'} \zeta^{2m_{i'} R_{k+1}}$ ($k \geq u$) for any $i, i' \in \{1,\ldots,s\}$. Noting that $p = \kappa N_1$ with $R_{k+\kappa} \equiv R_k$ (mod N_1) for any $k \geq u+1$, we see that $\sum_{l=k}^{l+p-1} R_{l+1} \equiv 0 \pmod{N_1}$ for any $k \geq u$ and so $\sum_{l=u}^{l} R_{l+1} \equiv \sum_{l=u}^{l+pk'} R_{l+1} \pmod{N_1}$ for any $k \geq u-1$ and for all $k' \geq 0$. Hence $\sum_{i=1}^{s} c_i x_i^{k-u+1} \zeta^{m_i(R_{u+1}+\dots+R_{k+1})} = 0$ ($k \geq u$). By (10) with (e_{i1}, \ldots, e_{it}) = ($e_{i'1}, \ldots, e_{i't}$) we get $a_i q_i^{2R_{k+1}} = a_{i'} q_{i'}^{2R_{k+1}}$ ($k \geq u$) for any $i, i' \in \{1,\ldots,s\}$ and $\sum_{i=1}^{s} c_i x_i^{k-u+1} q_i^{R_{u+1}+\dots+R_{k+1}} = 0$ ($k \geq u$). This completes the proof of the theorem. \Box

Sketch of the proof of Main Theorem 2.3. Choosing a suitable complete set of representatives of the orbits $U_{\mathcal{A}}/D_{2N}$, we can prove the theorem.

References

- G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
- [2] J. H. Loxton and A. J. van der Poorten, Algebraic independence properties of the Fredholm series, J. Austral. Math. Soc. Ser. A 26 (1978), 31–45.
- [3] K. Nishioka, Conditions for algebraic independence of certain power series of algebraic numbers, Compositio Math. **62** (1987), 53–61.
- [4] K. Nishioka, Mahler functions and transcendence, Lecture Notes in Mathematics No. 1631, Springer, 1996.
- [5] T. Tanaka, Algebraic independence of the values of power series generated by linear recurrences, Acta Arith. 74 (1996), 177–190.
- [6] T. Tanaka, Algebraic independence results related to linear recurrences, Osaka J. Math. 36 (1999), 203–227.
- [7] T. Tanaka, Algebraic independence of the values of Mahler functions associated with a certain continued fraction expansion, J. Number Theory **105** (2004), 38–48.
- [8] T. Tanaka, Conditions for the algebraic independence of certain series involving continued fractions and generated by linear recurrences, J. Number Theory 129 (2009), 3081–3093.
- [9] T. Tanaka, Algebraic independence of the values of a certain map defined on the set of orbits of the action of Klein four-group, 数理解析研究所講究録 **2131** (2019), 177-187.