Eichler–Selberg Relations for Singular Moduli

Yuqi Deng Graduate School of Mathematics, Kyushu University

Abstract

The Eichler–Selberg trace formula expresses the trace of Hecke operators on spaces of cusp forms as weighted sums of Hurwitz–Kronecker class numbers. We extend this formula to a natural class of relations for traces of singular moduli. This work is a joint project with Prof. Ken Ono and Prof. Toshiki Matsusaka [3].

1. Singular Moduli

Let \mathbb{H} be the upper-half plane and $q := e^{2\pi i \tau}$ for $\tau = u + iv \in \mathbb{H}$. For $z \in \mathbb{C}$, we put $\mathbf{e}(z) := e^{2\pi i z}$. The elliptic modular *j*-function is defined by

$$j(\tau) \coloneqq \frac{E_4(\tau)^3}{\Delta(\tau)} = \frac{1}{q} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \cdots,$$

where

$$E_k(\tau) \coloneqq 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

is the Eisenstein series of weight k and

$$\Delta(\tau) \coloneqq q \prod_{n=1}^{\infty} (1-q^n)^{24} = \frac{E_4(\tau)^3 - E_6(\tau)^2}{1728}$$

is a holomorphic cusp form of weight 12.

Let d be a positive integer such that -d is congruent to 0 or 1 modulo 4, and \mathcal{Q}_d the set of all positive definite binary quadratic forms $Q(X,Y) = [A,B,C] \coloneqq AX^2 + BXY + CY^2$ $(A,B,C \in \mathbb{Z})$ of discriminant -d. The group $\Gamma \coloneqq \mathrm{PSL}_2(\mathbb{Z})$ acts on \mathcal{Q}_d by

$$\left(Q \circ \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)(X,Y) := Q(aX + bY, cX + dY).$$

For each $Q \in \mathcal{Q}_d$, we define $\alpha_Q \in \mathbb{H}$ as the unique root in \mathbb{H} of $Q(\tau, 1) = 0$. We write Γ_Q for the stabilizer of Q in Γ . It is well-known that

$$\#\Gamma_Q = \begin{cases} 3 & \text{if } Q \sim X^2 + XY + Y^2, \\ 2 & \text{if } Q \sim X^2 + Y^2, \\ 1 & \text{if otherwise.} \end{cases}$$

For any non-negative integer $m \ge 0$, let $j_m(\tau)$ be the unique polynomial in $j(\tau)$ satisfying $j_m(\tau) = q^{-m} + O(q)$. The set $\{j_m(\tau) : m \ge 0\}$ forms a basis of $M_0^!(\Gamma)$, the space of weakly holomorphic modular forms of weight 0 on Γ .

Example 1.1. The first first few examples are listed below.

$$j_0(\tau) = 1,$$

$$j_1(\tau) = j(\tau) - 744 = q^{-1} + 196884q + \cdots,$$

$$j_2(\tau) = j(\tau)^2 - 1488j(\tau) + 159768 = q^{-2} + 42987520q + \cdots,$$

$$j_3(\tau) = j(\tau)^3 - 2232j(\tau)^2 + 1069956j(\tau) - 36866976 = q^{-3} + 2592899910q + \cdots.$$

Definition 1.2. For each $m \ge 0$ and d as above, we define the trace functions

$$\mathbf{t}_m(d) \coloneqq \sum_{Q \in \mathcal{Q}_d/\Gamma} \frac{1}{\#\Gamma_Q} j_m(\alpha_Q).$$

For m = 0, it gives the Kronecker–Hurwitz class number:

$$H(d) \coloneqq \mathbf{t}_0(d) = \sum_{Q \in \mathcal{Q}_d/\Gamma} \frac{1}{\#\Gamma_Q}$$

2. Zagier's results on the generating series

In 1975, Zagier showed a modular aspect of H(d).

Theorem 2.1. [12] The generating function

$$\mathcal{H}(\tau) \coloneqq -\frac{1}{12} + \sum_{\substack{d>0\\d\equiv 0,3 \pmod{4}}} H(d)q^d + \frac{1}{8\pi\sqrt{v}} + \frac{1}{4\sqrt{\pi}} \sum_{n=1}^{\infty} n\Gamma\left(-\frac{1}{2}, 4\pi n^2 v\right) q^{-n^2}$$

is a harmonic Maass form of weight 3/2 on $\Gamma_0(4)$.

Its holomorphic part

$$\mathcal{H}^+(\tau) \coloneqq -\frac{1}{12} + \sum_{\substack{d>0\\d\equiv 0,3 \pmod{4}}} H(d)q^d$$

is a mock modular form of weight 3/2 on $\Gamma_0(4)$.

After that, in 2002, Zagier [13] extended the result to cover a more general case with $m \ge 0$.

Theorem 2.2. [13, Theorem 5] For m > 0, the generating function

$$g_m(\tau) := -\sum_{\kappa|m} \kappa q^{-\kappa^2} + 2\sigma_1(m) + \sum_{\substack{d>0\\d\equiv 0,3 \pmod{4}}} \mathbf{t}_m(d)q^d$$

is a weakly holomorphic modular form of weight 3/2 on $\Gamma_0(4)$.

For simplicity, for $d \leq 0$, we put

$$\mathbf{t}_m(d) = \begin{cases} 2\sigma_1(m) & \text{if } d = 0, \\ -\kappa & \text{if } d = -\kappa^2, \\ 0 & \text{if otherwise.} \end{cases}$$

3. Zagier's proof of the Eichler–Selberg trace formula

The Eichler–Selberg trace formula establishes a connection between the Kronecker–Hurwitz class number H(d) and the trace of the Hecke operator.

Theorem 3.1 (The Eichler–Selberg trace formula). For $k \ge 2$, we have

$$\operatorname{Tr}(T_n, S_{2k}) = -\frac{1}{2} \sum_{r \in \mathbb{Z}} p_{2k}(r, n) H(4n - r^2) - \lambda_{2k-1}(n),$$

where

- S_{2k} is the space of holomorphic cusp forms of weight 2k on Γ ,
- T_n is the n-th Hecke operator,

•
$$p_k(r,n) = \sum_{0 \le j \le \frac{k}{2} - 1} (-1)^j \binom{k-2-j}{j} n^j r^{k-2-2j} = \operatorname{Coeff}_{X^{k-2}} \left(\frac{1}{1 - rX + nX^2} \right),$$

• $\lambda_k(n) \coloneqq \frac{1}{2} \sum_{d|n} \min(d, n/d)^k$.

In unpublished notes [11], Zagier gave a new proof of the Eichler–Selberg trace formula. This is recently revisited and published by Ono–Saad [10]. First, we review it.

The idea is based on a computation of $\pi_{\text{hol}}([\mathcal{H},\theta]_{\nu}|U_4)$ in two ways. Here

- $\theta(z) = \sum_{n \in \mathbb{Z}} q^{n^2}$ is a holomorphic modular form of weight 1/2 on $\Gamma_0(4)$.
- *U*-operator is defined by

$$(f|U_t)(\tau) \coloneqq \frac{1}{t} \sum_{j=0}^{t-1} f\left(\frac{\tau+j}{t}\right),$$

that is,

$$\left(\sum_{m} c_f(m, v) q^m\right) | U_t = \sum_{m} c_f\left(tm, \frac{v}{t}\right) q^m$$

• $[f,g]_{\nu}$ is the Rankin–Cohen bracket defined by

$$[f,g]_{\nu} \coloneqq \sum_{\substack{r,s \ge 0\\r+s=\nu}} (-1)^r \frac{\Gamma(k+\nu)\Gamma(l+\nu)}{s!\Gamma(k+r)r!\Gamma(l+s)} D^r(f) D^s(g)$$

for modular forms f, g of weight k, l, respectively, where $D \coloneqq \frac{1}{2\pi i} \frac{\mathrm{d}}{\mathrm{d}\tau} = q \frac{\mathrm{d}}{\mathrm{d}q}$, (see [2, Section 5]).

• π_{hol} is the holomorphic projection, (see [1, Section 10]).

For the right-hand side, by applying Mertens' result [8], we have

$$\pi_{\mathrm{hol}}([\mathcal{H},\theta]_{\nu}|U_4) = [\mathcal{H}^+,\theta]_{\nu}|U_4 + 2\binom{2\nu}{\nu}\sum_{n=1}^{\infty}\lambda_{2\nu+1}(n)q^n.$$

By a direct calculation, we obtain

$$[\mathcal{H}^+, \theta]_{\nu} | U_4 = \binom{2\nu}{\nu} \sum_{n=0}^{\infty} \left(\sum_{r \in \mathbb{Z}} p_{2\nu+2}(r, n) H(4n - r^2) \right) q^n.$$
(3.1)

Therefore, we conclude that the *n*-th coefficient of $\pi_{\text{hol}}([\mathcal{H}, \theta]_{\nu}|U_4)$ is

$$\binom{2\nu}{\nu} \left(\sum_{r \in \mathbb{Z}} p_{2\nu+2}(r,n) H(4n-r^2) + 2\lambda_{2\nu+1}(n) \right).$$
(3.2)

For the left-hand side, first, we recall the following.

Lemma 3.2 (Eichler–Zagier [4, Theorem 5.5], with some modification). The function $[\mathcal{H}, \theta]_{\nu}|U_4$ is a modular form of weight $2\nu + 2$ on Γ .

In particular, $\pi_{\text{hol}}([\mathcal{H}, \theta]_{\nu}|U_4)$ becomes a holomorphic cusp form in $S_{2\nu+2}(\Gamma)$. It can be expressed as

$$\pi_{\text{hol}}([\mathcal{H},\theta]_{\nu}|U_4) = \sum_{j=1}^d a_j f_j, \qquad (3.3)$$

where f_j 's are normalized Hecke eigenforms of $S_{2\nu+2}(\Gamma)$.

Lemma 3.3. For any $1 \le j \le d$, we have

$$a_j = -2\binom{2\nu}{\nu}.$$

Idea of proof. By using expression of $\mathcal{H}(\tau)$ in terms of the Eisenstein series, (see [10, Section 2.2] or [5, Chapter 2]), we can compute

$$\begin{aligned} a_{j}\langle f_{j}, f_{j} \rangle &= \langle \pi_{\text{hol}}([\mathcal{H}, \theta]_{\nu} | U_{4}), f_{j} \rangle \\ &= \langle [\mathcal{H}, \theta]_{\nu} | U_{4}, f_{j} \rangle \quad \text{(by definition of } \pi_{\text{hol}}) \\ &= -2 \binom{2\nu}{\nu} \frac{\pi}{3} \frac{(2\nu+1)!}{(4\pi)^{2\nu+2}} \sum_{n=1}^{\infty} \frac{c_{f_{j}}(n^{2})}{(n^{2})^{\nu+1}} \quad \text{(by unfolding argument)} \\ &= -2 \binom{2\nu}{\nu} \langle f_{j}, f_{j} \rangle \quad \text{(Rankin-Selberg's method [2, Section 11.12]),} \end{aligned}$$

which concludes the proof.

Thus, we have

$$\pi_{\text{hol}}([\mathcal{H},\theta]_{\nu}|U_4) = -2\binom{2\nu}{\nu}\sum_{j=1}^d f_j.$$

Since

$$T_n f_j = c_{f_j}(n) f_j,$$

we conclude that the *n*-th coefficient of $\pi_{\text{hol}}([\mathcal{H}, \theta]_{\nu}|U_4)$ is

$$-2\binom{2\nu}{\nu}\operatorname{Tr}(T_n, S_{2\nu+2}).$$
(3.4)

Comparing (3.2) and (3.4) implies Theorem 3.1.

4. Main results

Inspired by Zagier's proof, we try to compute $[g_m, \theta]_{\nu}|U_4$. By a similar calculation as in (3.1), we have

$$[g_m,\theta]_{\nu}|U_4 = \binom{2\nu}{\nu} \sum_{n \gg -\infty} \sum_{r \in \mathbb{Z}} p_{2\nu+2}(r,n) \mathbf{t}_m (4n-r^2) q^n$$

and $[g_m, \theta]_{\nu}|U_4 \in M^!_{2\nu+2}$. For $\nu = 0$, since $M^!_2(\Gamma) = \{0\}$, we have

$$\mathcal{G}_{m,0}(\tau) \coloneqq [g_m, \theta]_0 | U_4 - \sum_{\substack{-\frac{m^2}{4} \le n \le -1}} \frac{1}{n} \left(\sum_{r \in \mathbb{Z}} \mathbf{t}_m (4n - r^2) \right) Dj_{-n}(\tau) = 0.$$
(4.1)

For $\nu > 0$, we see that

$$\mathcal{G}_{m,\nu}(\tau) \coloneqq [g_m,\theta]_{\nu} | U_4 - \binom{2\nu}{\nu} \sum_{-\frac{m^2}{4} \le n \le 0} \sum_{r \in \mathbb{Z}} p_{2\nu+2}(r,n) \mathbf{t}_m(4n-r^2) P_{2\nu+2,n}(\tau)$$
(4.2)

is a holomorphic cusp form in $S_{2\nu+2}(\Gamma)$, where

$$P_{k,m}(\tau) \coloneqq \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} q^{m}|_{k} \gamma$$

is the Poincaré series. In particular, $P_{k,0}(\tau) = E_k(\tau)$ is the Eisenstein series. In a similar manner to (3.3), it should be expressed as

$$\mathcal{G}_{m,\nu}(\tau) = \sum_{j=1}^d b_j f_j.$$

Example 4.1. Let m = 1 and $\nu = 0, 1$. Since $S_2(\Gamma) = S_4(\Gamma) = \{0\}$, we have $\mathcal{G}_{m,\nu}(\tau) = 0$, that is,

$$\begin{aligned} \mathcal{G}_{1,0}(\tau) &= [g_1,\theta]_0 | U_4 = 0, \\ \mathcal{G}_{1,1}(\tau) &= [g_1,\theta]_1 | U_4 + 4P_{4,0}(\tau) = 0. \end{aligned}$$

By comparing the *n*-th Fourier coefficients $(n \ge 1)$ on both sides, we get the recursion formulas

$$\sum_{r \in \mathbb{Z}} \mathbf{t}_1(4n - r^2) = 0,$$

$$\sum_{r \in \mathbb{Z}} r^2 \mathbf{t}_1(4n - r^2) = -480\sigma_3(n).$$

As noted in [7], the traces $\mathbf{t}_1(d)$ can be calculated by the above formulas recursively without knowing anything about its original definition.

Example 4.2. Let $\nu = 5$. For m = 1, 2, 3, we have

$$\begin{aligned} \mathcal{G}_{1,5}(\tau) &= [g_1, \theta]_5 | U_4 + 504 E_{12}(\tau) \\ &= -504 \cdot \left(-\frac{82104}{691} \right) \Delta(\tau), \\ \mathcal{G}_{2,5}(\tau) &= [g_2, \theta]_5 | U_4 + 504 \left(P_{12,-1}(\tau) + 2049 E_{12}(\tau) \right) \\ &= -504 \left(\frac{1746612}{691} - \alpha \right) \Delta(\tau), \\ \mathcal{G}_{3,5}(\tau) &= [g_3, \theta]_5 | U_4 + 504 \left(2049 P_{12,-2}(\tau) + 177148 E_{12}(\tau) \right) \\ &= -504 \left(\frac{3294976184}{691} - 2049 \beta \right) \Delta(\tau), \end{aligned}$$

where we have

$$P_{12,-1}(\tau) = \Delta(\tau)(j_2(\tau) + 24j_1(\tau) + 324 + \alpha) = \frac{1}{q} + \alpha q + \cdots,$$

$$P_{12,-2}(\tau) = \Delta(\tau)(j_3(\tau) + 24j_2(\tau) + 324j_1(\tau) + 3200 + \beta) = \frac{1}{q^2} + \beta q + \cdots,$$

with $\alpha = 1842.894...$ and $\beta = 23274.075...$ We observe that

$$-\frac{82104}{691} = -24 - \frac{65520}{691} = -24 + \frac{\Gamma(11)}{(4\pi)^{11}} \frac{1}{\|\Delta\|^2} \cdot (-33.383...),$$
$$\frac{1746612}{691} - \alpha = -24 \cdot 3 + \frac{\Gamma(11)}{(4\pi)^{11}} \frac{1}{\|\Delta\|^2} \cdot 266.439...,$$
$$\frac{3294976184}{691} - 2049\beta = -24 \cdot 4 + \frac{\Gamma(11)}{(4\pi)^{11}} \frac{1}{\|\Delta\|^2} \cdot (-1519.2...),$$

where $\|\Delta\|^2 = \langle \Delta, \Delta \rangle = 0.0000010353...$

We can compare them with the values of the symmetrized shifted convolution Dirichlet series defined by

$$\widehat{D}(\Delta, m; 11) \coloneqq \sum_{n=1}^{\infty} \frac{\tau(n)\tau(n+m)}{n^{11}} - \sum_{n=1}^{\infty} \frac{\tau(n)\tau(n-m)}{n^{11}},$$

(see also Hoffstein–Hulse [6]). As in Mertens–Ono [9], it is known that

$$\widehat{D}(\Delta, 1; 11) = -33.383..., \quad \widehat{D}(\Delta, 2; 11) = 266.439..., \quad \widehat{D}(\Delta, 3; 11) = -1519.2...$$

which suggest the equation

$$\mathcal{G}_{m,5}(\tau) = -2\binom{2\nu}{\nu} \left(-24\sigma_1(m) + \frac{\Gamma(11)}{(4\pi)^{11}} \frac{1}{\|\Delta\|^2} \widehat{D}(\Delta, m; 11)\right) \Delta(\tau).$$

Our main result gives an explicit formula for the general cases.

Theorem 4.3. For any $\nu \geq 0$ and $m \geq 1$, we define $\mathcal{G}_{m,\nu}(\tau)$ by (4.1) and (4.2). Then we have

$$\mathcal{G}_{m,\nu}(\tau) = -2\binom{2\nu}{\nu} \sum_{j=1}^{d} \left(-24\sigma_1(m) + \frac{\Gamma(2\nu+1)}{(4\pi)^{2\nu+1}} \frac{1}{\|f_j\|^2} \widehat{D}(f_j,m;2\nu+1) \right) f_j$$

where f_j 's are normalized Hecke eigenforms of $S_{2\nu+2}(\Gamma)$.

Acknowledgment

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- K. Bringmann, A. Folsom, K. Ono, and L. Rolen, *Harmonic Maass forms and mock modular forms: theory and applications*, American Mathematical Society Colloquium Publications, vol. 64, American Mathematical Society, Providence, RI, 2017.
- [2] H. Cohen and F. Strömberg, *Modular forms*, Graduate Studies in Mathematics, vol. 179, American Mathematical Society, Providence, RI, 2017. A classical approach.
- [3] Y. Deng, T. Matsusaka, and K. Ono, *Eichler-selberg relations for singular moduli*, Forum Math. Sigma 12 (2024), e117, 24. Paper No. e117.
- M. Eichler and D. Zagier, *The theory of Jacobi forms*, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985.
- [5] F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976), 57–113.
- [6] J. Hoffstein and T. A. Hulse, Multiple Dirichlet series and shifted convolutions, J. Number Theory 161 (2016), 457–533. With an appendix by Andre Reznikov.
- [7] M. Kaneko, The Fourier coefficients and the singular moduli of the elliptic modular function $j(\tau)$, Mem. Fac. Engrg. Design Kyoto Inst. Tech. Ser. Sci. Tech. 44 (1996), 1–5.
- [8] M. H. Mertens, Mock modular forms and class numbers of quadratic forms, Ph.D. Thesis, 2014.
- [9] M. H. Mertens and K. Ono, Special values of shifted convolution Dirichlet series, Mathematika 62 (2016), no. 1, 47–66.
- [10] K. Ono and H. Saad, Some Eichler-Selberg trace formulas, Hardy-Ramanujan J. 45 (2022), 94–107.
- [11] D. Zagier, Modular forms of one variable. Notes based on a course given in Utrecht, Spring 1991, available in https://people.mpim-bonn.mpg.de/zagier/files/tex/UtrechtLectures/UtBook.pdf.
- [12] _____, Nombres de classes et formes modulaires de poids 3/2, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 21, Ai, A883–A886.
- [13] _____, Traces of singular moduli, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), 2002, pp. 211–244.

Yuqi Deng Graduate School of Mathematics Kyushu University Fukuoka 819-0395 JAPAN Email: deng.yuqi.608@s.kyushu-u.ac.jp