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Abstract

The Eichler—Selberg trace formula expresses the trace of Hecke operators on spaces of cusp forms
as weighted sums of Hurwitz—Kronecker class numbers. We extend this formula to a natural
class of relations for traces of singular moduli. This work is a joint project with Prof. Ken Ono
and Prof. Toshiki Matsusaka [3].

1. Singular Moduli

Let H be the upper-half plane and q := €?™7 for 7 = u+iv € H. For z € C, we put e(z) = e2™%,
The elliptic modular j-function is defined by

E ) 1 .
j(r) = A4((T; = — + 744 + 196884q + 21493760q2 + 864299970q5 + -
T q
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is the Eisenstein series of weight k& and
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is a holomorphic cusp form of weight 12.

Let d be a positive integer such that —d is congruent to 0 or 1 modulo 4, and Q4 the set
of all positive definite binary quadratic forms Q(X,Y) = [4,B,C] = AX? + BXY + CY?
(A, B,C € Z) of discriminant —d. The group I' := PSLy(Z) acts on Q4 by

<Q 0 <‘C‘ Z)) (X,Y) = Q(aX + bY, cX +dY).

For each Q € Qg , we define ag € H as the unique root in H of Q(7,1) = 0. We write I'g for the
stabilizer of Q) in I'. It is well-known that

3 ifQ~X24+XY +Y?2,
#o=4¢2 ifQ~X2+Y?
1 if otherwise.
For any non-negative integer m > 0, let j,,,(7) be the unique polynomial in j(7) satisfying

Jm(7) = ¢"™ + O(q). The set {j,,(7) : m > 0} forms a basis of M}(T), the space of weakly
holomorphic modular forms of weight 0 on I'.



Example 1.1. The first first few examples are listed below.

Jo(7) =

Ji(r) = .7(7') 744 = 7' + 196884q + -

ja(7) = j(7)* — 1488j(7) + 159768 = q_2 + 42987520q + - - - ,

43(7) = j(1)® — 2232;(7)? + 10699567 (T) — 36866976 = ¢ + 2592899910 + - - - .

Definition 1.2. For each m > 0 and d as above, we define the trace functions
= 2 aq).
QeQq/T #
For m = 0, it gives the Kronecker—-Hurwitz class number:

H(d) = = > #

QeQq/T

2. Zagier’s results on the generating series
In 1975, Zagier showed a modular aspect of H(d).

Theorem 2.1. [12] The generating function

H(T) = —1—12+ Z H(d)qd+8w\/_ 4\/_2711“( s 4mn ’U>q "
d>0

>
d=0,3 (mod 4)

is a harmonic Maass form of weight 3/2 on T'y(4).

Its holomorphic part

1
HH (1) = —35 + > H(d)g"
dEO,3d(>r?10d 4)

is a mock modular form of weight 3/2 on I'y(4).
After that, in 2002, Zagier [13] extended the result to cover a more general case with m > 0.

Theorem 2.2. [13, Theorem 5] For m > 0, the generating function

Eﬁq #4201 (m) + Z tn(d) g
K|m d>0
d=0,3 (mod 4)
is a weakly holomorphic modular form of weight 3/2 on I'g(4).

For simplicity, for d < 0, we put
201(m) ifd= 0,
tm(d) =< —k ifd=—

0 if otherwise.



3. Zagier’s proof of the Eichler—Selberg trace formula

The Eichler—Selberg trace formula establishes a connection between the Kronecker—Hurwitz class
number H(d) and the trace of the Hecke operator.

Theorem 3.1 (The Eichler-Selberg trace formula). For k > 2, we have

Te(Tn, Sok) = —5 ZP% r,n)H(4n — %) — Ay 1 (n),
rEZ

where
o Soi is the space of holomorphic cusp forms of weight 2k on I,
e T, is the n-th Hecke operator,

k—2—4\ . . 1
(] pk(T7 TL) = Z (-1)3 < ] j)njrk_Q_QJ = Coefka-_z <m) )

-~k
0<j<k1

o \ip(n) = %de min(d,n/d)".

In unpublished notes [11], Zagier gave a new proof of the Eichler—Selberg trace formula. This
is recently revisited and published by Ono—Saad [10]. First, we review it.
The idea is based on a computation of m([H, 0],|Us) in two ways. Here

o 0(2) => ez ¢ is a holomorphic modular form of weight 1/2 on I'y(4).

e U-operator is defined by

t—1
(A1) = f(Tﬂ)
=0

Jj=
that is,

(; cf(m,v)qm> |U; = Zcf (tm, %) "

m

e [f, 9], is the Rankin—Cohen bracket defined by

> gl = Z>0 (=1 s;((]/z J:L :;E!(rl(x)s) Drnpie)

r4s=v

for modular forms f, g of weight &, [, respectively, where D = ﬁ% = qdiq, (see [2, Section
5]).
® Tho is the holomorphic projection, (see [1, Section 10]).

For the right-hand side, by applying Mertens’ result [8], we have

ot ([, 0]u|Us) = [H". 0], |Us + 2 (2:> > ava(n)g".
n=1

By a direct calculation, we obtain

(1T, 60],|Us = (i”) > (Z Powso(r,n)H(4n — 7»2)) q". (3.1)

n=0 \reZ



Therefore, we conclude that the n-th coefficient of w1 ([H, 6], |Uy) is

(2;/) <Z povy2(r,n)H(4n — r?) + 241 (n)) ) (3.2)

reZ
For the left-hand side, first, we recall the following.

Lemma 3.2 (Eichler-Zagier [4, Theorem 5.5], with some modification). The function [H,0],|Us
s a modular form of weight 2v 4+ 2 on I.

In particular, me([H,0],|Us) becomes a holomorphic cusp form in Sg,42(I'). It can be
expressed as

Thot ([H, 0], |Us) = Za] i (3.3)

where f;’s are normalized Hecke eigenforms of Sa,o(I).

Lemma 3.3. For any 1 < j <d, we have

2
aj = —Q(Vy>.

Idea of proof. By using expression of H(7) in terms of the Eisenstein series, (see [10, Section
2.2] or [5, Chapter 2]), we can compute

a;(fj, f3) = (ot ([, 0] |Us), f5)
= ([H,0],|Us, fj) (by definition of mpe)
o) Tt 5 el

v ) 3 (4m)2v+2 (n2)v+1

(by unfolding argument)
n=1

2
= —2( ;) (fj, f;) (Rankin-Selberg’s method [2, Section 11.12]),

which concludes the proof. O

Thus, we have
d
2v
Thol ([H, 0]u|Us) = —2( V> ;fy

Since
Tnfj = ij(n)fj7
we conclude that the n-th coefficient of 1 ([H, 0], |Us) is

) <2:) Tr(T,n, Sau12)- (3.4)

Comparing (3.2) and (3.4) implies Theorem 3.1.



4. Main results

Inspired by Zagier’s proof, we try to compute [g,, 0],|Us. By a similar calculation as in (3.1),
we have

2v
(o B, |Us = (V) S 3 povealr mt (40 — )"
n>—o0 rcZ

and (g, 0],|Us € M), ,,. For v =0, since M4(I") = {0}, we have

Gmo(7) = [gm, 0lolUs — % (Ztm(éln - r?)) Dj_n(1) =0. (4.1)

—mTzﬁTLS—l re€Z

For v > 0, we see that

G (7) = [gm,e]y|U4—(2:> S S paa(nm)tmdn — ) Pogan(r)  (42)

—mT2SnS0 reZ

is a holomorphic cusp form in Sy,42(I"), where
Pom(m) =Y "y
yEl\I!

is the Poincaré series. In particular, P, o(7) = Ej(7) is the Eisenstein series. In a similar manner
to (3.3), it should be expressed as

d
G (T) =Y bify-
j=1

Example 4.1. Let m =1 and v = 0,1. Since So(I") = S4(I") = {0}, we have G, (1) = 0, that
is,

Gi,0(7) = [91,0]0|Us = 0,
G1.1(7) = [91,011|Us + 4Py o(7) = 0.

By comparing the n-th Fourier coefficients (n > 1) on both sides, we get the recursion formulas

> ti(dn—1?) =0,

reZ

Z 2ty (4n — r?) = —48003(n).

rez

As noted in [7], the traces t;(d) can be calculated by the above formulas recursively without
knowing anything about its original definition.



Example 4.2. Let v = 5. For m = 1,2, 3, we have

9175(7-) = [gl, «9]5’[]4 + 504E12(7’)
82104
Go5(T) = [g2,0]5|Us + 504 (Pia _1(7) + 2049 E12(7))
1746612
= 504 ( o a) A7),
g375 (T) = [93, 9]5|U4 + 504 (2049P127_2(T) + 177148E12(7’))

294976184
— 504 (M - 20495) A7),

691

where we have
1
Pra_1(1) = A(7)(j2(7) + 24j1(7) + 324 + ) = p +ag+---,
. . . 1
Pz (1) = A(7)(j3(7) + 24j2(7) + 32451(7) + 3200 + B) = e +Bq+---,

with o = 1842.894 ... and § = 23274.075.... We observe that
82104 0 65520 _ T 1

e g P 7 -(—33.383...
691 691 (4m)1 || A2 ( )
1746612 r(n 1
—a=-24- N .966.439. ..
o1 a 3+(47T)11 TNE 66.439. ..,
3294976184 r(n 1

— 20498 = —24 4 + ———~

G TAp (15192,

691
where ||A]]? = (A, A) = 0.0000010353.. . ..

We can compare them with the values of the symmetrized shifted convolution Dirichlet series
defined by

D(A, m: 11) = Zl T(n)TT(L?l—F m) Zl T(n):E?l_ m)

(see also Hoffstein—Hulse [6]). As in Mertens—Ono [9], it is known that

)

~ ~ ~

D(A,1;11) = —33.383..., D(A,2;11) =266.439..., D(A,3;11) = —1519.2...,

which suggest the equation

~

G s(7) = —2(2;) (—2401(m) + (2(73)11)1 H Al”ZD(A,m; 11)) A(r).

Our main result gives an explicit formula for the general cases.

Theorem 4.3. For any v > 0 and m > 1, we define Gy, ,(7) by (4.1) and (4.2). Then we have

d
) = =21} ) 32 (2t + G D20+ 1) £
j=1 J

where f;’s are normalized Hecke eigenforms of Sa,12(I).
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