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ABSTRACT. Let |z] denote the integer part of x. In 1947, Mills constructed a real

number A > 1 such that LA3kJ is a prime number for every k£ € N. Let W be the set of
all such real numbers A. It is known that W is uncountable, nowhere dense, closed, and
has Lebesgue measure 0. In this paper, we give a simple proof of this fact.

1. INTRODUCTION

Let N be the set of all positive integers, and |z] denotes the integer part of x. In 1947,
Mills showed the following theorem.

Theorem 1.1 ([8, THEOREM]). There exists a real number A > 1 such that
(1.1) LA‘SkJ is a prime number for every k € N.

The following fact is already known. Before stating it, a subset X of R is nowhere
dense if X NU is not dense in U for all non-empty open subsets U of R in the sense of
the Euclidean topology.

Theorem 1.2. Let W be the set of all real numbers A > 1 satisfying (1.1). Then the set
W is uncountable, nowhere dense, closed, and has Lebesque measure 0.

We note that the uncountability, nowhere denseness, and zero measure of WV are con-
sequences of [13, THEOREMS 5,6,7] and the closedness is deduced from [4, Lemma 3] or
[12, Theorem 1.2].

After Mills” work, several mathematicians are interested in the existence of A > 1 such
that LACkJ is a prime number for every k € N, where ¢ is a fixed positive real number.
For instance, Kuipers [7] showed the existence of such A for every integer ¢ > 3. Ansari
[2] extended the range to real numbers ¢ > 77/29; Niven [9] independently presented a
similar extension, but it is for ¢ > 8/3 = 2.666 - - - .

Wright [13] first considered a set of such numbers A, and he investigated its geometric
properties. To exhibit his result, let K > 1 and (Dy)%2, be a sequence of positive real
numbers. Suppose that (A;)72; is a sequence of real functions satisfying that for all k € N

e )\, (x) is positive and continuous on [Dj_1,00);

o \i(2) = () > K(2/ — x) for all 2’ > x > Dy_;.
We further define ¢y (x) = A 0 A1 0 -+ A\y(x) for all z > Dy, where fog(z) = f(g(x)).
Let B be a subset of N. Then, Wright studied the properties of

W((dr)iy) = {A>1: |¢r(A)]| € B for all k € N}.

He gave sufficient conditions on B and (A;)32; to obtain W((¢y)5,) is uncountable,
nowhere dense, and has Lebesgue measure 0. It is hard to follow the proofs for beginners
because his paper is highly generalized. Thus, by focusing only on the case as \y(x) = 23,

this paper aims to give a more accessible proof.
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Deschamps [4] studied more details on the geometric properties of W((¢y)32 ;) in the
case when A\ (z) = \y(z) = --- = A(x), that is,
k

—N—
¢rp(r) =Ao---0\(x).

He gave sufficient conditions so that W((¢x)52,) is closed, totally disconnected, and has
no isolated points. The author and Takeda [12] also gave a similar result when Ay (z) = 2%
for every k € N and (c;)52, is a sequence of integers satisfying suitable conditions.

We refer to [5] for more details on the early research of this topic. Recently, the author
[10] showed that min W is irrational. We refer to [1, 12] for the readers who want to know
the arithmetic properties of elements in W.

2. UNCOUNTABILITY

Throughout this paper, let VW be as in Theorem 1.2, and P denotes the set of all prime
numbers. This section aims to prove that WV is uncountable. Before that, we show Mills’
result (Theorem 1.1) for practicing. To prove it, we should apply a suitable result on
prime gaps. Actually, Mills applied the following result given by Ingham.

Theorem 2.1 ([6]). For every € > 0, there exists xo = xo(€) > 0 such that for every real
number x > xo, we find a prime number p satisfying that © < p < x + x>/3t¢.

We remark that Ingham asserted a stronger statement, that is, for every ¢ > 0, there
exists £y > 0 such that for every x > xy, we find a prime number p satisfying that
v < p < x4+ 25779+ Baker, Harman, and Pintz [3] proposed the best-known result
which states that we may replace 577/925 + € with 21/40.

We choose € = 1/24 and let 2 be as in Theorem 2.1. By this theorem and 15/8+3¢ = 2,
for every integer n > x( there exists p € P such that

(2.1) nd<p<nd4nte 430 +3n=mn+1)7>—-1.
Proof of Theorem 1.1. Let p; be a sufficiently large prime number so that p; > l‘(l)/3. By
(2.1) with n = p?, we find p, € P such that p} < p, < (p1 + 1)® — 1. Similarly, by (2.1)

with n = p3, we find p3 € P such that p3 < ps < (p2+1)* — 1. By iterating this argument
(more precisely, by induction), we find a sequence (px)52; of prime numbers such that

(2.2) Ph <pry < (pe+1)° =1
for every k € N. This leads to
23) < <PV < < s DY < (o + DY < (oo + )V
and hence .

lim p,lf/?’ — A and lim(p,+ 1)/ = A

k—o00 k—o00
exist. In addition, A < A’ holds' by (2.3). Therefore, for every k € N, we have

pr < A < AP <pp 1,

which implies that p, = | A% | for every k € N. O
Theorem 2.2. The set W s uncountable.

TActually, A = A’ holds, but A < A’ is enough for this proof.
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The inequalities (2.1) are not strong enough to prove this theorem. For instance, we
prepare the following auxiliary lemma.

Lemma 2.3. There eizsts x1 > 0 such that for all integers n > x1, we find prime numbers
p(0) and p(1) such that n® < p(0) < p(1) < (n+1)3 —1.

Proof. Let e = 1/24, and let 2o be as in Theorem 2.1. Let x; be a sufficiently large positive
real number. Take an arbitrary n > x;. We may assume that n > x; > x3. Then, by
Theorem 2.1 with o = n?, there exists p(0) € P such that

(2.4) n® < p(0) < n®+n’

Furthermore, by Theorem 2.1 with 2 = n® 4+ n? + 1, there exists p(1) € P such that
(2.5) P 4n?+1<p1) <n®+n?+1+ (n°+n+1)3

where 2/3 =5/8 4+ 1/24 = 5/8 + €. Furthermore, we observe that

(2.6) (n®+n?+ 1) =n?(1+nt 4033 < 2n?

by replacing x; with larger one so that (1+ 27! +27%)%/% < 2 if necessary. By combining
(2.4), (2.5), and (2.6), we obtain
n® <p0)<n*+n®*<n’®+n®+1
<p()<n*+3n*+1<n®*+3n*+3n=(n+1)7°-1,
and hence n® < p(0) < p(1) < (n+1)3 — 1. O
Proof of Theorem 2.2. Let x; be as in Lemma 2.3. Take prime numbers p(0) and p(1)

with 2; < p(0) < p(1). For every ¢ € {0,1}, Lemma 2.3 implies that there exist prime
numbers p(4,0) and p(i, 1) such that

2.7) p(i)* < p(i,0) < p(i,1) < (pi) + 1) — 1.
Thus, we obtain prime numbers p(iy,is) ((i1,42) € {0,1}?).

For every (iy,i3) € {0,1}?, Lemma 2.3 implies that there exist prime numbers p(iy, iz, 0)
and p(i1, iz, 1) such that
(2.8) plin, o) < plin, iz, 0) < p(ir, iz, 1) < (p(ir,iz) + 1) — 1.
Thus, we obtain prime numbers p(i1, iz, 13) ((i1,12,73) € {0,1}?).

We now define i, = (i1,49,...,4) for all i = (i1,4,...) € {0,1}. By iterating the
above argument, we obtain a set {(p(ix))3>,: i € {0, 1}N} of sequences of prime numbers
so that for every i € {0, 1} and for every k € N, we have

(2.9) p(ix)® < p(ix, 0) < p(ix, 1) < (p(ix) +1)° — L.
In a similar manner to the proof of Theorem 1.1, for every i € {0, 1}, there exists a real
number A(i) > 1 such that |A(i)*" | = p(ix) for every k € N. Therefore, we have

{AG):ie{0,1}"} Cw.
Since {0, 1} is uncountable, it suffices to show that A(i) # A(j) for all i,j € {0, 1} with
i # j. Take arbitrary i,j € {0, 1} with i # j, and let m = min{k € N: i, # ji }.
Suppose that m = 1. Then, it is clear that A(i) # A(j) since
LAG1)°] = p(in), [AG)?] =pG1), and p(is) # p(ir)-
Suppose that m > 2. Then, by (2.9) with £ =m — 1 and the definition of m, we have

(21()) p<im—17 0) < p(im—h 1)7 im—l == jm—lv and lm % .]m .
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Therefore, we obtain A(i) # A(j) since there are distinct integers i,,, j, € {0,1} such
that

LAG)®| = plim-1:im),  [AG)’] = plim-1,7m),
p(imfla Zm) = p(jmflv Zm) 7£ p(jmflujm)u
where we apply (2.10) to obtain the latter formula. O

3. TOPOLOGICAL PROPERTIES

In this section, we prove that WV is nowhere dense and closed. It is also known that W
has no isolated points (See [4, 12] for more details), but we do not give a proof of this
fact in this paper.

Theorem 3.1. The set W is nowhere dense.

Proof. Take an arbitrary non-empty open set U C R. We may assume that W N U # (.
Then, let I = («, 3) be an open interval such that I C U and 1 < a < 5. We take a
sufficiently large k € N so that B3k — 3" > 100. Then, there exists a composite number
M such that o < M < M +1 < 3.

Let o = M3 € I C U, and let e = min(1,3 %(z+1)'3""). Then, (z,z+¢)NW = 0.
Indeed, for all A € (x,x + €), we have

M=2" <A <(z+¥ <2 +3eclx+1)" ' < M+1,
and hence | A%" | ¢ P, that is, A ¢ W. Therefore, W N U is not dense in U. O

Remark 3.2. For all X C R, X is totally disconnected if X is nowhere dense. Thus,
Theorem 3.1 yields that W is totally disconnected.

Theorem 3.3. The set W is closed.

Proof. Let (A;)52, be a sequence of W such that lim; ,,, A; = A exists. Suppose that
there is a subsequence (A;, )22, such that A; > A;, > --- > A. Then, for any fixed k¥ € N,
by the right-side continuity of the floor function, we observe that

(A% ) = [lim AT = lim | A7),

We note that LA;’fJ € P since A;, € W for all r € N. Therefore, | A% | € P since Z is a
discrete topology (or P is closed).
We may suppose that there exists j, > 0 such that

1<Aj0§Ajo+1§Ajo+2§”'§A'

Take an arbitrary positive integer k. If 43" ¢ 7, then the continuity of the floor function
leads to
1A% ] = | lim A%"] = lim |A%"] € P.
j—00 J Jj—o0 J

Suppose that A% € Z. If A; = A for some j > jo, then (4%)? = A}q?kﬂ, and so
(4%)? = |A¥"'| € P. This is a contradiction since the left-hand side is a composite
number. Thus, we may assume that A; < A for all j > jy. Then, there exists j > jy such
that

A3k+1 _ LA3k+1J _ LA?kHJ 1
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by combining A; < A (for all j € N), lim; , A; = A, and A" € Z. Therefore, we have
(AT) = 1= A7,

a contradiction since the left-hand side is a composite number but the right-hand side is
a prime number. U

If a topological space X is non-empty, compact, totally disconnected, and has no iso-
lated point, then X is homeomorphic to the middle third Cantor set. Therefore, the set
W N [0,a] is homeomorphic to the middle third Cantor set for every sufficiently large
a € R\ W. See [4, 12] for more details.

4. LEBESGUE MEASURE

Let u denote the Lebesgue measure on R. In this section, we show the following
theorem.

Theorem 4.1. The set W has Lebesgue measure 0.

Lemma 4.2. Let A € W. Let p, = LA?’kJ for every k € N. Then for every k € N, we
have p} < pr1 < (pr +1)3.

Proof. Take an arbitrary integer k£ € N. Since p, = LA?’kJ, we have p, < A3 < e+ 1,
and hence p} < A" < (p, + 1)%. Since p? € N, we obtain p} < |A*""'| < (pp + 1)3,
which implies that p} < priy < (pr + 1)3. O

Lemma 4.3. For every € > 0, there exists xo > 0 such that for every x > x5, we have
. 3
#([2%, (z+1)°)NP) < (5 + e) 72

Proof. Let € be a positive real number. Let x5 be a sufficiently large real number depending
only on €. Take an arbitrary real number x > 5. Then since (z +1)% —2® = 323+ 3z +1,
we have

322 + 3 1 3 3
(2 (+ 1)) NP) < % +1< 5214207 < S(1+207")a?,
where the first inequality follows by counting odd numbers in [2?, (z 4+ 1)?). By choosing
x9 > 0 as xs > 3/€¢, we complete the proof. U

Proof of Theorem 4.1. Let e = 1/2, and let x5 be as in Lemma 4.3. The symbol p; denotes
a variable running over P. For every m € N. By Lemma 4.2, we observe that

W={4>1:|A"] P for all ke N}
= J{Aa>1: (A =p}nw

pLEP
= U U {A>1:|A%] =p;and [A¥| = p} N

P1EP pa€fpd,(p1+1)%)
By iterating the above argument, for every k € N, we have

w-U U -~ U

P1EP paclp},(p1+1)3)  pr€lpy_1.(pr—1+1)3)
{A>1: |AY] = p; for every j € [L K]} N W.
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We note that pj, > p3" > 23" since P} < pjp for every j =m,m+1,...,k —1. Thus, we
take a positive integer m as p,, > 2" > z,. By the subadditivity of the Lebesgue measure,
it suffices to show that for every fixed (p1,...,pm) € P™ with p; € [p}_, (pj—1 + 1)?)
(j =2,3,...,m), the Lebesgue measure of

{A>1:|AY] = p; for every j € [1,m]} N W
is zero. Let W be this set. Similarly, for every k > m, the set W' is
U U {A>1: LA?’jJ:pj for every j € [1,k]} N W
Prt1€[P5,(m+1)3)  prElpi_ | (pr—141)3)

Here, for every k > m, we observe that

ﬂ({A> 1: |A¥ | = p, forall j € [1,l<:]}> §u<{A> 1: A% :pk}>

1/3kF—1
k k k k p
=u<[p;1/3 o+ 1)V )) = (et D =g < P

where we apply (z + 1)* — 2% < ax®! for all z > 0 at the last inequality. Thus, the
subadditivity of the Lebesgue measure implies that (V') is less than or equal to

Z Z u({A >1: [AY | = p; forall j € [1,k]}>

Py <pm1<(Pm+1)®  pd_ <pp<(pr—1+1)

< 3 3 3_1kp]1€/3k_1

3 <pm1<(pm+1)®  pd_ <pp<(pp—1+1)°
1 k—1_«
2 1/3k—1_3
< E e E 2P - 3k Pr—1 ’
Py <pm1<(pm+1)®  pd_ ,<pp_1<(pp—2+1)3

where we apply Lemma 4.3 with ¢ = 1/2 at the last inequality. Therefore, by iterating
this calculation, we obtain

2\ 1 g,
W/ < - _ 1/3 —1
W'y < ( 3> P
for all integers k > m, and hence by taking k — oo, we conclude that p(W’') = 0. O
Combining Theorems 2.2, 3.1, 3.3, and 4.1, we obtain Theorem 1.2.

In [11, Theorem 18], the author showed that the Hausdorff dimension of
wnp'?, (p+ 1))

3
plogp
to verify that the dimension equals 1.

-1
is greater than or equal to (1 + ) for every sufficiently large p € P. It is still open
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