WEAKER CAN OFTEN BE BETTER

TIMOTHY S. TRUDGIAN

ABSTRACT. This short note covers the contents of my talk given at RIMS,
Kyoto, in October 2024. Some estimates in analytic number theory are best
when the variable n or z, say, is sufficiently large. Others may be better
for more moderate values of n or x, despite being weaker in the long run. We
should pursue weaker results since, in applications, weaker can often be better.

1. INTRODUCTION

Suppose you have a function f(z), and you want a bound for f(x) to hold for a
certain range of z. What sorts of bounds can you write down? Of all these bounds,
which is the best when x is large? Which is the best when z is very large?

Suppose that, via a simple argument, you can show that

flz)>z, (x>1). (1.1)
Suppose that, via a complicated argument, you can improve this, and show that
f(z) > 1.01x — 101929 (2 > x0), (1.2)

for some xg. When z is very large, it is clear that the bound in (1.2) is better
than that in (1.1). Indeed, a simple rearrangement shows that this is so whenever
x > 101290, This is very large indeed! What is worse, we need to figure out
in order to be able to apply the bound in (1.2). Not only may this be difficult,
but even if we accomplish this task, we still have that (1.2) beats (1.1) only for
x > max{zg, 101200}, If the application we have in mind calls for a smaller z, then
the weaker bound (1.1) is surely the one to use.

The purpose of this article is to explore the theme above. Instead of asking which
result is stronger (clearly (1.2 is stronger for sufficiently large z), we really should
be asking which result is better, where ‘better’ means ‘gives a sharper result in the
region of our interest’. It may be that weak bounds can be useful in small ranges,
then slightly stronger ones when the range increases, and then the strongest.

2. THREE ZERO-FREE REGIONS

As an example, consider zero-free regions for the Riemann zeta-function. The
problem is to find a function f(t) such that {(o +4t) is non-zero for o > 1—1/f(t).
If the Riemann hypothesis (RH) were true, we could take f(t) = 2. There are
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zeroes on the line o = 1/2, and RH! says that these are the only (non-trivial) ones.
Not only is proving f(¢) = 2 beyond reach, but even proving f(t) = 101% or indeed
f(t) = C for any fixed C' seems hopelessly difficult. We only know how to exhibit
functions f(¢) with the property that f(t) — oo as t — co. The aim of the game is
to try to exhibit f(¢) that grow as slowly as possible.

The so-called classical zero-free region of ((s), due to de la Vallée Poussin (see
[30, Chapter 3]) shows that one may take f(t) = Aslogt for some constant As
provided that ¢ > 3. The choice of indexation on this constant A3 will become
clear later. One area of research is to reduce this As as much as possible: the
current best value is 5.558691 found in [20]. Much work has been done here: see,
e.g., Table 1 in [19].

Littlewood showed that one can instead take f(t) = A4 logt/loglogt. Ultimately
this is smaller than the corresponding f(¢) from the classical zero-free region: hence
this is ultimately a wider (and hence better) zero-free region. Recent work by Yang
[33] shows that one may take A4 = 21.233 whenever ¢ > 3. When does this result
overtake the classical zero-free region? A simple rearrangement shows that we need
t > exp(exp(A4/A3)) ~ 6.3 - 10'°. Hence, even though the Littlewood zero-free
region is ultimately better than the classical one, the classical region is still useful
for certain ranges? of t.

Still stronger zero-free regions are known: the strongest is due to Vinogradov and
Korobov and allows one to take f(t) = As(logt)?/3(loglogt)/3. This result, from
1957, is (slightly less than) a factor of (logt)/3 better® than the classical zero-free
region. Building on seminal work by Ford [9, 10], and improvements made in [20],
Bellotti [2] showed that one could take A5 = 53.989. A quick calculation shows that
this improves on the Littlewood zero-free region when ¢ > exp(483,000) ~ 10210’

One can summarise the above results* as follows.

e For 0 <t <102 RH is true.

e For 10'2 <t < 6.3-10'9 the classical zero-free region is best.

e For 6.3-101? <t < 10219 the Littlewood zero-free region is best.

e For ¢ > 10219 the Vinogradov and Korobov zero-free region is best.

There is an important point to note with the above estimates. The size of the
constants Ag, A4, A5 increases in line with the strength of the result. If, e.g., A4 <
Ajz then the bound A4 logt/loglogt would always be better Azlogt. The fact that
A4 > Az is what gives rise to the results being better in different ranges. One should
suspect that this would be true in general. The stronger the result, the ‘harder’ it
is to prove, and hence the ‘harder’ it is to obtain good® explicit constants.

1Indeed7 as noted in my talk, the Clay Institute offered $1,000,000 for the resolution RH.
Actually, this award is only paid if one proves RH; I know of no award for the disproof of the
Riemann hypothesis. Inspired by Yuta Suzuki’s talk about work in [4] I am happy to record an
award here. If someone can prove the Nnameir hypothesis (that not all non-trivial zeroes lie on
the critical line) then I will pay $0,000,001.

2We know that the Riemann hypothesis is true for values of t < 3- 1012 from [24].

3There does not seem to be a known path to victory to improve even the exponent of (loglogt).
Indeed, even showing some f(t) = o ((log t)2/3(log log t)1/3) seems very difficult.

4See also the discussion in [33] for another ‘intermediate’ zero-free region.

5Indeed7 I remember Martin Huxley once telling me that if a proof required N steps, then, as
a rule-of-thumb, one should assume that the implied constant is at least 2%V.
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3. MORE ZERO-FREE REGIONS

But this is not the end of the tale for zero-free regions. There are results in
between those of Littlewood and Vinogradov—Korobov. As an example, (6.15.1)
in Titchmarsh [30] shows that one make take f(t) = Ay5(logt)3/*(loglogt)/4. 1
am not aware of any explicit work done on Ay 5. It is unlikely that any such work
would be numerically useful, particular because the estimates for A4 and As are
so good. In that sense, such an intermediary result risks being ‘squeezed out’ by
neighbouring results.

Nevertheless, the concept of exploring different bounds is a useful one. Remem-
ber the numbering of the constants? Since no bound with constant A7 is likely
to appear any time soon, what about a bound with A5? That is, what about a
zero-free region weaker than the classical one? Is there such a region? Yes, in fact,
there are two of which I am aware.

The first comes from elementary proofs of the prime number theorem (PNT).
One can prove the PNT, with elementary means, and obtain an error term. Let
¥(r) = > ,m<, logp be the sum over all prime powers not exceeding #. The PNT is
the statement that ¢)(x) ~ 2. The best error term obtained via elementary means
is due to Sampath and Srinivasan [28], namely

[t(z) — x| < zexp <—4—10(10g:c)1/6) , (x> exp(exp(40)). (3.1)

Since elementary proofs are a thin subset of ‘all proofs’, one would expect that
other means should furnish better bounds than (3.1). Indeed, this is so: see [8] and
[15] for explicit versions of (3.1) with better powers of log 2 on the right-hand side.

But what does this have to do with zero-free regions? Pintz [22] shows the
connection between error terms R(z) in ¢ (z) — 2 = O(xR(x)) and zero-free regions
of ¢(s). See also [25] and [14] for recent explicit work on this front. All of this shows
that the error term in (3.1) yields a zero-free region of the shape f(t) = Ay log”t
for some constant A;. With a little work, one could find the constant As. If Ay is
sufficiently small, then this zero-free region would be better than the classical one,
but only for a finite range of . However, this is unlikely ever to be useful. Even if
Ay were as small as 1075, this ‘elementary zero-free region’ beats the classical one
only when t < 7.2 - 10"' — and we know that RH is true up to this height!

Now, if you think that the ‘elementary zero-free region’ is bad, get a load of
the next one. The easiest zero-free region to prove for the Riemann zeta-function
is due to an argument of Landau. This is often the first zero-free region proved
in books on the subject: see, e.g., just after (3.6.4) in [30]. This shows that one
may take f(t) = A log? t. Even proving A; = 10719 still only gives a zero-free
region beating the classical one beneath the height to which we know RH is true.
Therefore, computing A or A; would be a pointless exercise.

While the calculation of the values of these constants is silly, their generalisation
is an exciting prospect. For example, an explicit zero-free region for Dirichlet L-
functions, or Vinogradov-Korobov strength, was only proved recently by Khale
[16]. T am not aware of a Littlewood-style zero-free region for L(s,x). Moreover,
the current classical region performs well when ¢t (here ¢ is the modulus of the
character y) is relatively large. This often requires some minimal value of ¢. But
what about, for example, zero-free regions around height ¢t = 1/100 for ¢ ~ 10°?
This is beyond the range for which we know partial versions of the Generalised
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Riemann Hypothesis are true — see, e.g., [23]. Perhaps a weaker-than-classical
zero-free region could give better results here.

For still more exotic L-functions, such as Rankin—Selberg L-functions, nothing
beyond the generalisation of the classical zero-free region is known — see, e.g., [13].
As such, hope springs eternal, even for the Landau bound with A;. This is the
easiest bound to establish, but may be useful in complicated settings. One could
even imagine settings where weak bounds are the only ones we could prove.

4. WEAKER MAY BE ALL THERE IS!

Consider the problem of representing integers as the sum of two squares. Let
R(z) be the number of n < z such that n can be written as n = a?+b%. Landau and
Ramanujan showed that R(z) ~ Cz/y/logz for an explicit value of C. Since the
number of primes up to x is ~ x/log z, there are more sums-of-squares than primes.
Hence, in the absence of some sort of arithmetic obstruction, one would think that
problems with sums-of-squares should be easier than problems with primes.

This is certainly true when it comes to proving the existence of a prime or sum-
of-square in a short interval. Even under RH all we know is that there is a prime in
the interval (n,n + n'/ 2+¢). Without assuming any hypotheses one can show that
there is a square-free number in (n,n + cn'/*) for some constant ¢. Bambah and
Chowla [1] showed that one may take ¢ = 2%/2 + . Uchiyama® [32] refined their
method and, in just two pages, proved that one can take ¢ = 23/2, and that this’
result holds for all n > 1.

At the RIMS meeting I offered a prize® for anyone who could improve this result
in any capacity. Could one show, for example, that for sufficiently large n there
are sums-of-squares in intervals of the form (n,n + en'/*) for some constant ¢ <
23/27 Given that Maynard [18] has shown the existence of sums-of-squares in some
very short intervals, and given that (n,n + cn'/*) is well short of the conjectured
(n,n 4 n®) there is certainly hope that Uchiyama’s result can be improved.

The point to make here is that the simple, elementary argument by Uchiyama
(which uses nothing more than introductory calculus), gives the best result. Prob-
ably stronger results are true, but, for now, this weak result really is the best.

5. CONCLUSION

There are many other examples of weaker results being more ‘useful’ than stronger
results. Just in the theory of ((s) alone there are results on bounds on ((1/2 4 it)
(see [21] and [12]) for a list of such results), zero-density estimates (see [3, 5]), and
explicit estimates on moments [27, 6, 7].

Slightly further aficld, there are explicit bounds of varying strengths known for
the error term in the prime number theorem, sums of arithmetic functions (for
example, the M&bius function), and sums of Dirichlet characters. A priceless source
of information for such results is the website maintained by Olivier Ramaré [26].

6At the RIMS meeting, I enjoyed discussing Uchiyama’s work with his former student, and
mainstay of Japanese number theory, Koichi Kawada.

It may be possible to refine Uchiyama’s constant slightly, but, as shown in [31], one could not
hope to reduce it beyond ¢ = 2.41. . .; note that 23/2 =2.82. . ..

8The prize was even more generous than that for proving the Nnameir hypothesis from §2,
namely, a handy (and complementary!) toothbrush from my hotel lobby.
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There are numerous examples from a number field setting where numerically
explicit versions of the prime ideal theorem are hard to obtain: simpler versions
are often preferred, as in the work by Lee [17] and by Garcia and Lee [11]. Indeed,
during the RIMS conference Wataru Takeda made me aware of his work in number
fields [29], which requires a kind of explicit Bertrand postulate...much easier to
prove than a prime number theorem with explicit error term!

In all these examples one really seeks the result that is best in the range of
interest. As such it is important to furnish as many explicit results as possible, even
if they are not the strongest asymptotically. This allows a lot of mathematicians
to contribute to this area of research. These contributions can range from purely
computational to purely theoretical. Since these contributions also require intimate
knowledge of the literature (and this brings its own rewards), this programme of
research is a rich one, indeed.
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