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Let t > 1 and k > 0 be any fixed integers. Dilcher and Ericksen [DE]
introduced Type-1 Stern polynomials a(n; z) defined by a(0; z) = 0, a(1; z) =
1, and for n > 0

a(2n;z) = za(n: 2", a@n+1;2) = a(n+ 1;2") + a(n; 2%).

and found a new class of continued fractions stated below. Define the se-
quence
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The subsequence of polynomials (a(ay; 2)) generates the finite continued
fractions
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The polynomial a(ay,+1; 2) is an extension of a(a,; z), and so the limmit
Hi(z) = lim a(ap;2)
n—oo

defines a power series converges in the unit circle. Letting n tend to infinity,
we obtain the infinite continued fraction
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For example,
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We state our results.
Theorem 1. For any algebraic number z with 0 < |z| < 1 the numbers

H,,(2) and Hy(z") are algebraically independent.
Corollary 1. The continued fraction Hy(z)/Hg (2!") is trancsendental.

Our proof of the theorem is a simple application of Mahler’s method in
trancsendental number theory developed in [N] and also in [A].
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