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1 Introduction

Firstly, as subject of this paper, let us consider the lattice point problems, which have been studied
for a long time. In particular, the geometric subject to look at this time is the closed curves p-circle
{x € R?| |z1|P + |22|P = rP} generalizing a circle for positive real number p, as shown in Figure 1.

If p is 2, it is a circle, and for p greater than 2 it expands outward and for p less than 2 it depresses
inward. Particularly, the case p = % is well known as the astroid.

In view of the fact that the Bessel functions appear in the process of solving the circle problem,
the functions corresponding to the p-circle problems, that is, the generalized Bessel functions for p,
are determined. Then, the series representation of certain functions, which is the key to solving the
problems, is given as the main result.

As an introduction, we will discuss the specifics of the problems and previous studies. Ry(r) is
the number of lattice points in the p-circle of radius r at the center of the origin. In addition, since a

lattice point and area of the unit square at the center of that point are in one-to-one correspondence,
_ 2l

P I(2)
Note that the second term on the right-hand side is the area of the p-circle and I'(s) is the gamma

r2 through the approximation of Figure 1.

we can consider the error term P,(r) := Ry(r)

function.
Then, the subject of problems is order of growth of P, as the radius is infinitely large. Specifically,
the problem is to find values such that the order of the Landau symbols O and 2 match with respect
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Figure 1: Examples of the p-circle and the approximation by unit squares.



to P,. Note that, for the functions f and g, f(¢t) = O(g(t)) and f(t) = Q(g(t)) respectively mean

lim supy o [ZE| < +00 and liminf o [ZH] > 0.

In the case of a circle, that is p = 2, Hardy[3] derived lim,_, 7"_%|P2(7“)| = oo in 1915, and
conjectured the following[4].

Py(r) = O(T’%+E> for any small € > 0. (1.1)

This means that the infimum of P, evaluation is a half order, but this conjecture remains un-

resolved to this day. As latest results, it turns that the evaluation holds with & greater than

102(=0.127 - -+ ) by Bourgain and Watt[1] in 2017.

On the other hand, in the cases p > 2, there is a well-known method. Let us consider the
representation of P,([7], (3.57)), which is decomposed by second main term ¥ by E. Krétzel, and a
remainder term A of less than % order at most.

Py(r) = W (r;p) + A(r; p).

Then, the second main term W is defined as a series consisting of generalized Bessel functions by
Kritzel([7], (3.55), Definition 3.3).

U(r;p) = 8/l (1 + ]1)) Z (%) Jép)(27mr) for r > 0,

n=1
(p) 2 T 17277’ 1 p y—1 1
Jy (r)::ﬁf(y+1—%) <§) 0(1—75) r cosrt dt forr>0.,1/>];—1.

But, note that these are different from the generalization of the Bessel functions stated subse-

quently in this paper.

This representation of P, and O - Q estimates of ¥, obtained from the asymptotic expansion of

U, show that the following important theorem holds.

Theorem 1.1 (/7/, Theorem 3.17 A). Let p > 2. If o, < 1 — % such that A(r;p) = O(r®) ewists,
then Py(r) = (’)(rl_%), Q(rl_%) holds.

This theorem shows that improving the evaluation for the remainder term A is directly related to
solving the problem of the cases p > 2. As the latest result with this established method, from the
Kuba’s result[8] which O order for A is approximately % in 1993, the cases with at least p greater
than g—? have been resolved.

On the other hand, it is difficult to apply this method to solving problems of the cases 0 < p < 2.
The figure astroid represented by the case p = % is also included in these cases. For example, one
of the main problems that cannot be applied is appearance of singular points in the derivative of
22(x1). Thus, in order to solve the problem in these unsolved cases such as 0 < p < 2, we need to

use another method.



Now, we turn our attention again to the case p = 2, and particularly focus on S. Kuratsubo and
E. Nakai’s paper in 2022[9]. One of the main results of this paper is a theorem giving a harmonic-
analytic claim that is equivalent to the Hardy’s conjecture (1.1) (see Theorem 7.1 in [9]).

For f > —1, s > 0 and z € R?, if we define

Dg(s: x) == ﬁ Z (s — |m|?)Pe?™em  Dy(s:x) =

1 / 2\B 2mix-&
_ s — [£]F)Pe ™ s dE,
L(B+1) |£|2<s( <)

(1.2)
then Dg — Dg is a generalization of the circle error term P, and this function can be expressed as

a series sum of the Bessel function for 8 > 1 ([9], (2.6)).

Im|?<s

Jg11(2my/s|x — n|)
) — ) — BHlof+L B+1
D5<8 s x) D@(S rx) =820 GZZ\:{O} (27r\/§|aj — n|)3+1 . (1.3)

This equality plays an very important role in various parts in the paper .
From this equality and various properties of the Bessel functions, a relatively crude O evaluation
formula for the error term P, is obtained, but for the cases 0 < p < 2, the current situation is that

we have only obtained the two evaluations
Py(r) = 0O(r) it p > 0,
1
Pp(r):(’)(r%) if0<P§§

from the theorem by Kritzel for general convex figures ([7], Theorem 3.1-3.6). Therefore, instead
of trying to improve the second main term method of Kritzel, we consider solving the problems by

generalizing Kuratsubo and Nakai’s method for p.

Thus, in this paper, by replacing R2norm by p-norm | - |, (that is, [£|, = (|&1P + |§2|p)% for
€ = (&,&%) € R?), we consider D[[f] — D[ﬁp], which consist of generalizations of Kuratsubo and
Nakai’s functions (1.2) for p

Pl . - 1 _ B 2mix-m Pl . - 1 o B 2mix-€
Dfi(s1a) = gy 3 (o= fmipemiem, (s a) i F(BH)/WQ(S €)Pemim e,

Imlp<s

Then, as we saw in the circle case, it is clear that D[ﬁp] — D[g] are generalizations of P, by variables.

2 Main results

As the goal of this paper, in order to derive the series representation of D[é)] — Dg)], that is a
generalization of (1.3), we need to appropriately generalize the Bessel functions.

We note that D[é)] are in the form of Fourier transforms for p-radial functions. The property of
p-radial is generalized one of spherical symmetry, and for a function F on R?, we say that F is

p-radial if there exists a function ¢ on nonnegative real numbers satisfying F(z) = ¢(|z|,) on R2.



The Fourier transform of a function F which is p-radial and integrable on R? can be expressed as

follows from elementary variable transformations.

/ J[p] (27ré)p(r)rdr for ¢ € R?, (2.1)

1 1

2
with J[p]( )= 211 (2) / cos(nitr)cos(nz(l —t)r)t %_1(1 - t)%_ldt for n € R2.
r2G)\e/ Jo

In the case p = 2, this is called Hankel transform of order zero([2]). The function J(gp | defined
here is a generalization of the Bessel function of zero order for p. However, note the difference in
the definition region between each other.

Furthermore, following the property that a Bessel function of a certain order can be expressed by

integration of Bessel function of a different order([10], Lemma 4.13)

o+t 1
Jotp+1(t) = CEN ) / Jo(ts)s®T(1 — s2)ds for a > bt g>-1,1t>0,
we define the generalized Bessel function of non-negative real order by taking J([)p | as the nucleus
and adding a positive order as follows([5], (2.4), Definition 2.5).
2
o) e ﬁ (2) I8 cos(a:lt%) cos(za(l — 1)7)tr (1 — )7 'dt  ifw =0,

(2.2)
P 11"(w) fo [p] — Tp)‘*’_ldr if w> 0.

Then, the main result of this paper, a generalization of the display (1.3) is following theorem.

Theorem 2.1 ([5], Theorem 1.3). Let p > 0. If 8 > —1 satisfies that D[ﬁp](l : x) is integrable on
R?, then

JEL @ /5 — n))
2 ¢/3lz — i)

Furthermore, under this assumption, since |x — nl, > % for x € T?(:= (—%, %]2) and n # 0, the

2 1
D[Bp](s cx) — D[é)](s cx) = 5’8+Ppﬁ+lf2(—) Z
nez2\{0}

for s >0, z € R

series converges absolutely for x € T?.

Hereafter, we will outline the proof of this theorem.

Firstly, note that Dg)](l : x) is in the form of the Fourier transform of function U /Lp ]1

(L= |z[p)? if |l <1,

U (z) = |
0 if |z|, > 1,

and by the generalized Hankel transform of zero-order (2.1) and the definition of gl ](2.2), thereby
following Lemma is obtained.



Lemma 2.2 ([5/, Proposition 3.1). Let p >0 and 3 > —1. Then, the following holds.

L) T (2mgsa)

2
pW for s >0, x € R*.

Dg)](s cx) = sﬁ+%pﬁ+11"2(

Next, under the integrable assumption, we obtain the series representation of D[;]
D[g](s cx) = Z Dgﬂ](s tx—n) (2.3)
nez?

by applying the Fourier inverse transform and Poisson’s sum formula.

Lemma 2.3 (Poisson summmation formula: [10], Theorem 2.4). For a function F integrable on
R? (d € N), the series f(z) == 3, cza F(x +m) converges in the L'-norm of T¢(:= (-3, 3]%) and
is integrable on T%, and F(m) = f(m), that is, the following holds.

flx) = Z F(m)e¥™®m  for x e T4,

meZd
Poisson’s sum formula is about periodization of integrable functions, and thus we see that Dg)]
are periodizing functions consisting of D[é)].
Therefore, under the assumption 3, by Lemma 2.2 and the expansion(2.3), derivation of the

desired formula is completed.

D[g](s tx) — D[Bp](s tx) = Z D[Bp](s tx—mn)
nez2\{0}

2 1
_ 5/5+ppﬁ+1r2(_) Z
neZ2\{0}

T @ /5@ —n))

2
(2r ¢ole —nl P for s > 0, = € R“.

3 Concluding remarks

Finally, I would like to conclude this paper with some perspectives on future research. By the
generalization of Kuratsubo and Nakai’s the equality (Theorem 2.1), obtained this time, from now
on, we aim to improve O evaluation of P,.

Firstly, we need to identify an infimum of S where D[é)](l : x) is integrable on R?, which is the
assumption of Theorem 2.1. If we obtain uniformly asymptotic evaluations of Ju[f) J on R2, then this
is solved.

On the other hand, by Van der Corput’s Lemma, that is, asymptotic evaluation method for
oscillatory integrals, we have already obtained a uniform evaluation of zero-order as a special case.

In detail, as the conditions to be added, under p such that % are natural numbers, asymptotic

(]

evaluations of J” uniformly on R? are gained as follow.



Theorem 3.1 ([6], Theorem 1.5; Uniformly asymptotic estimates on R?).

For the cases such that % are the natural numbers, the following holds uniformly on R2.

onh?) (=2,

J[p] —
o) B (e,

as |n|p — oo.

SIS

O(Inlp

Thus, by this result, the method via Ju[f) I is expected to be suitable for problems of astroid type,

that is, the cases p such that % are odd numbers.
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