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Introduction

The study of minimal surfaces, specifically characterized by vanishing mean curvature and
commonly referred to as zero mean curvature surfaces (ZMC surfaces), dates back to the mid
18th century, with significant contributions from J. -L. Lagrange and L. Euler. This field
remains to be an area of active research across a variety of geometric spaces to the present day.
Various investigations and classifications regarding ZMC surfaces, particularly those featuring
planar curvature lines, have been conducted in different classes of surfaces and spaces. Since
the 19th century, scholars such as O. Bonnet [6] and L. P. Eisenhart [12] have made substantial
contributions to this topic. More recently, the field has been further advanced by many researchers,
amongst whom are S. Akamine, J. Cho, and Y. Ogata [3, 9, 10].

In Euclidean 3-space, the types of minimal surfaces with planar curvature lines are restricted
to the plane, the Enneper surface, the catenoid, and surfaces belonging to the Bonnet family
(refer to Figure 1).

Moreover, there is a burgeoning interest in isotropic 3-space, which is primarily studied
by K. Strubecker [20], largely due to its relationship with the geometries of Euclidean 3-space
R? and Lorentz-Minkowski 3-space L? (see [4, 17, 18, 19]). Notably, these geometries can be
cohesively described through the consideration of affine hyperplanes in L*, and furthermore, it is
well established that (spacelike) ZMC surfaces within this framework also admits a Weierstrass
representation [20] (see also |5, 15] for uniform points of view).

In this survey article, we first establish the foundational surface theory in isotropic 3-space
within the 4-dimensional Lorentz-Minkowski space. Subsequently, we present a complete clas-
sification of ZMC surfaces with planar curvature lines in 1%, accompanied by their canonical

Figure 1: Examples of minimal surfaces with planar curvature lines in R3: Enneper surface (left),
catenoid (middle) and a surface in the Bonnet family.

*This research is based on joint work with Joseph Cho (Handong Global University).



Weierstrass data (see Theorem 2.6). This topic was firstly investigated by K. Strubecker [21],
however, we complete the classification by adding in a new member of this class.

1 Surface theory in isotropic 3-space

Firstly, we introduce the isotropic 3-space derived from 4-dimensional Lorentz-Minkowski
space. Note that some researchers use an alternative definition, describing it as a Euclidean
3-space equipped with a degenerate metric ds?> = da? + dy?, often referred to as the simply
isotropic space (see, for example, [18]). Our point of view coincides with this via a projection
(see [8]).

Let L* be a Lorentz-Minkowski 4-space equipped with the inner product (-,-) of signature
(= + ++), and let £ be the light cone, that is,

L={XcL'|(X,X)=0}.
For a lightlike vector p € £ called a point sphere complex, the isotropic 3-space I? is defined as
P ={XeclL|(X,p)=0}
Without loss of generality, we choose p = (1,0, 0, 1)t, and then we can write
B ={{,xzy ) el

We refer to the coordinate space {(z,y, l)t} as isotropic 3-space, and refer to the l-direction as
vertical.
Let X (u,v) : ¥ — I? be a spacelike conformal immersion over a simply-connected domain ¥
with the metric ds® given by
ds* = e*(du® + dv®)

for some w: ¥ — R and let n : X — L be its lightlike Gauss map of X.
Then the mean curvature H and Hopf differential Q) are

H=2e"(X,z,n) and Qdz*= (X..,n)dz?

respectively, where z = u+iv. Thus, we have the Gauss-Weingarten equations and Gauss-Codazzi
equations
X, = 2w, X, + Qp
Xzz = leQWHp and {wzz ’ Ly
2 H, =2e wQZ’
n, =—-HX, -2 *QX;

respectively.

Since we only consider (spacelike) ZMC surfaces, we suppose H = 0 and omit 'spacelike’ for
the sake of simplicity. Then, since @ is holomorphic, we may choose M =0 and L = —N = —1
without loss of generality. Now the compatibility condition for X is

Wun + Wy = 0.



2 ZMUC surfaces with planar curvature lines

As mentioned in [17], I? is closely related to the geometries of both R® and L. For example,
when considering the mean curvature of spacelike graphs in each of these spaces, the corresponding
mean curvature formulas are nearly identical. The only difference is that for the cases of R?, I3
and L3, some signs are modified to 4, 0 and —, respectively. In fact, we can find such features
in some of our equations about the planar curvature line conditions. Thus the study of I® is
important because its geometry is expected to be the simplest.

The u-curvature lines of a surface X (u,v) are planar if Xy, Xy, Xyuu are linearly dependent.
Then we have the following lemma, which is an analogue of previous research |9, 10]:

Lemma 2.1. For an umbilic-free ZMC surface in I3, the following are equivalent:

e wu-curvature lines are planar.
e v-curvature lines are planar.
® Wyy + wWywy = 0.

Therefore, the solutions of the following system of partial differential equations for the
conformal factor w correspond to every ZMC surface with planar curvature lines:

Wy + Wyy = 0
{ (1)

Wyp + Wywy = 0.
Starting with viewing the second equation as logarithm derivatives of w, or w,, we can solve (1):

Lemma 2.2. Except for planes, without loss of generality, we have the following four solutions
to (1) as follows:

1. ¥ = le_o‘“
a ’

2. ¥ = g( 2107,

3. ¢ = — (coshau — cosav) and
a

4. w=gc,

where a, § € Rsg and ¢ € R.

Next, we compute their canonical Weierstrass-data; it is known that there is the Weierstrass
representation for ZMC surfaces in I®:

Fact 2.3 ([8], [20, Equation 8.31]). Any spacelike ZMC' surface X : ¥ — I3 over a simply-
connected domain 3 can be locally represented as

X = Re/(l,—z’,h)tn

or some meromorphic function h and holomorphic 1-form n with holomorphic h*n. Then X has
P )4 n P n
the induced metric
ds® = [n|?

with the Hopf differential
1
Qdz* = 37 dh.
We call (h,n) the Weierstrass data.



Remark 2.4. Spacelike ZMC surfaces in I? are often referred to as minimal surfaces, as you can
see in [8, 18, 20]. However, we need to care about the direction of the variation. If we take the
variation along the point sphere complex p, then ZMC surfaces are minimal. While if we take the
variation along the lightlike Gauss map n, then ZMC surfaces are maximal. This preference well
reflects the role of isotropic 3-space as a geometry between Euclidean and Lorentz-Minkowski
geometries.

1
Since we supposed ds? = e**(du® + dv?) and Q = —g We can find Weierstrass data of

solutions for (1) by solving
In|?> = e*dzdz and ndh = —dz>.

Choosing initial conditions so that the Weierstrass data is simple, we can recover the canonical
Weierstrass data and complete the classification.

Remark 2.5. Compared to the Weierstrass representations of minimal surfaces in Euclidean space
and maxfaces in Lorentz-Minkowski space, the metric of ZMC surfaces in I? only depends on the
holomorphic data . Therefore, we can directly find the canonical Weierstrass data only from
the metric.

By applying homotheties in I?, we may normalize 1, and the scale of h also can be simplified
by applying isometries in I3. Furthermore, we consider coordinates changes without loss of
generality, and we conclude as follows:

Theorem 2.6. Let X : ¥ — I? be a ZMC immersion with planar curvature lines. Then X must
be a piece of one, and only one, of the following:

e plane (0, dz),

trivial Enneper-type surface (z, dz),

catenoid (e*, e *dz),

Enneper-type surface (z_l, z2dz), or
e Bonnet-type surface (coth z, sinh? zdz),
up to the isometries and homotheties of I® and Lorentz boosts in the ambient space (see Figure 2).

For the classification theorems in other spaces, we have the Bonnet family up to isometries
and homotheties. However, in the case of isotropic 3-space, we only have exactly five surfaces by
additionally considering the Lorentz boost in L2.

Remark 2.7. Incomplete points on the five surfaces are points where the metric vanishes, that is,
zero points of 7. They are branch points and the Enneper-type surface in I? has such a point at
the center. On the Bonnet-type surface, such points appear periodically.

Remark 2.8. Without Lorentz boosts in the ambient space, the classification in Theorem 2.6 only
differs at the Bonnet-type surface. Without Lorentz boosts, it is a family given by the Weierstrass
data

«@ «@ 6 . Q@
(h, ) = (E coth 5% 2$ sinh? 52d2> ) (2)



(a) Trivial Enneper-type sur-
face (b) Catenoid

(¢) Enneper-type surface (d) Bonnet-type surface

Figure 2: ZMC surfaces with planar curvature lines in I® other than planes.

3 Continuous deformation

In the Euclidean and Lorentz-Minkowski spaces, there exist continuous deformations among
ZMC with planar curvature lines. Here, we consider a continuous deformation to be continuous
with respect to a parameter if the surface converges uniformly component-wise with respect to
the parameter on compact subdomains. In order to construct a deformation of ZMC surfaces in
I, we need to solve (1) so that every solution has the same initial conditions.

To deform from the Bonnet-type surface to the trivial Enneper-surface via ZMC surfaces with
2

@
planar curvature lines, we need to take the path § = — in (2) and take the limit as @ — 0.
Between the Enneper surface and catenoid via Bonnet surface, there exists a one parameter
family of surfaces along 6 in the following Weierstrass data:

Theorem 3.1. There exists a continuous deformation consisting exactly of the ZMC surfaces
with planar curvature lines in isotropic 3-space, and the Weierstrass data is
b B 2¢%9 cos @
(r0) ™ g=rcosfz(cosf + 1) — sin f

and

e~29(cos f sinh(r cos #z) — cosh(r cos #z) + sin ) @
rcos? 6
for some r € (0,00) and 0 € (0, %) (see Figure 3).

N(r0) =
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1—parameter family homothety and isometry

Figure 3: Continuous deformations of ZMC surfaces with planar curvature lines in I?.
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