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1 Introduction

Gauss’s Theorema egregium (which means remarkable theorem in Latin) states that
the Gaussian curvature K of a regular smooth surface M in the 3-dimensional Eu-
clidean space R? is determined by the first fundamental form ds® =37, ._, , gijdu’du’
of M, which means that K is determined by the Riemannian metric of M. This prop-
erty can be proved to give an explicit representation of K in terms of g;; and their
derivatives. Another proof was given by J. Bertrand [2] showing the following formula.

Theorem 1.1 (Bertrand-Puiseux theorem (1848) [2], cf. [1, Theorem 17]). Assume
that M is a smooth reqular surface. Then, for sufficiently small r > 0, the length
L(p;r) of the geodesic circle C(p;r) with center p € M and radius r is represented as

Lipir) =27 — S K (p)r + O, (1)

where K (p) is the Gaussian curvature of M at p.

Integrating (1) with respect to r, one can get the corresponding formula for the
area of small geodesic discs. Later A. Gray [3] gave the first five terms of the power
series expansion in radius r of the volume of a small geodesic ball in an analytic
Riemannian manifold of general dimension. However, if M is only piecewise-smooth,
such a formula does not hold in general.

Let M = U; M; be a piecewise-smooth surface in R? (for the definition of piecewise-
smooth surfaces, see §2). Since we will discuss local and intrinsic properties of M, it is

*This work is supported by JST CREST Grant Number JPMJCR1911, JSPS KAKENHI Grant
Numbers JP20H01801 and JP23K20212. 2020 Mathematics Subject Classification:53A05, 53B20,

53B21. Key words and phrases: piecewise-smooth surface, singular point of surface, intrinsic
curvature of surface, geodesic circle, geodesic disc, Gauss-Bonnet theorem, developable surface.



Figure 1: Left: a geodesic circle (dashed curve) with center at an extrinsic vertex
p = M;N---N Ms of a piecewise-smooth surface. Right: a geodesic circle (dashed
curve) with center at an extrinsic edge point p € E = M; N M, of a piecewise-smooth
surface.

not necessary to consider any ambient space that includes M. However, for simplicity,
we assume that M is embedded in R3. For points p,q € M, the distance d(p, q)
between p and ¢ is defined as the shortest length of piecewise-smooth curves in M
connecting p with g. The geodesic circle with center at p and radius r is the set of
all points ¢ € M satisfying d(q, p) = r, which is denoted by C(p;r) and its length is
denoted by L(p;r) (Figure 1). The domain D(p;r) bounded by C(p;r) including p is
called a geodesic disc with center at p and radius r. We can prove the following result.

Theorem 1.2 ([4, 5]). For sufficiently small r > 0, we have the following.
(1) Let p= My N ---N My be an extrinsic vertex of M. Then,

L(p:) :(i o) i(k;m +12,(0)) 2

= 5 2 (Ko ()0 + 057 01" + 0 ey

holds, where o; is the inner angle of M; at p, K;(p) is the Gaussian curvature of M,
at p, ky;(r) is the signed geodesic curvature of the edge M;_y N M; and kzzi(r) is that of
M; N My for the geodesic polar coordinate (r;,0;) in M; around p.

(i1) Let p be an interior point of an extrinsic edge E = My N My of M. And let
kqi(p) be the geodesic curvature of E at p as a point in the reqular surface M; with
respect to the normal pointing into the interior of M;. Then,

Lipir) = 27 = (b (p) + b (0)7? = £ (a0) + Ko@)+ OGY) (3)

holds.

We can obtain the corresponding formulas of the area of small geodesic discs D(p; r)
by integrating (2), (3) with respect to r from r = 0 to 7.



We should remark That, in the special case where M is a polyhedron and p is a
vertex of M, then 2w — Zf\il o, coincides with the so-called angular defect at p.
In view of Theorems 1.1 and 1.2, we define intrinsic singular points of M as follows.

Definition 1.1 (intrinsic vertex and intrinsic edge [4]). Let p be a point of a piecewise-
smooth surface M = U; M; in R3.

(1) Set S(p) = liIJIrlo W_—W If S(p) # 0, then we call p an intrinsic vertex
T—
of M.
(ii) Assume that S(p) = 0 holds. Set k.(p) = lirﬂom_r—f(p;ﬂ. If k.(p) # 0,
r—

then we call p an intrinsic edge point of M.

(111) We call p an intrinsic singular point of M if p is either an intrinsic vertex of
M or an intrinsic edge point of M.

(iv) Each maximal connected arc that consists of intrinsic edge points of M is called
an intrinsic edge of M.

Next we define curvatures of M at each intrinsic singular point.

Definition 1.2 (curvature at intrinsic singular point [4]). Let p be a point of a
piecewise-smooth surface M = U; M; in R3.

(i) We call S(p) the sharpness of M at p.

(11) Assume that S(p) =0 holds. We call k.(p) the edge curvature of M at p.

We give two important remarks on the intrinsic curvatures as follows.

Remark 1.1. (i) If p is an interior point of an extrinsic edge E = M, N M, of M,
then ke(p) = kga(p) + kgp(p) holds because of (3).
(i1) If p is a reqular point of M, then S(p) = ke(p) = 0 because of (1).

By using the curvatures defined above, we obtain a simple representation of the
celebrated Gauss-Bonnet formula for piecewise-smooth surfaces. For simplicity, we
give the formula for closed surfaces as follows.

Theorem 1.3 (Gauss-Bonnet type theorem [4]). Let M be a closed (that is, compact
and without boundary) piecewise-smooth surface in R3 with Euler characteristic x(M).
Denote the union of all intrinsic edges of M by E. Then, it holds that

/M K dA + /Ek: ds+ > S(p) =2mx(M), (4)

peEM
where dA is the area element of M and ds is the line element at reqular points of E.

Note that in the formula (4), the summation of S(p) is a finite sum because only
at intrinsic vertices of M, the sharpness S does not vanish. We also remark that,
regarding Gauss-Bonnet type formulas for surfaces with singular points, ones for fronts
are known/[6].

Here we give two simple examples.



Example 1.1. (i) Let M be the surface of a cube. If p is a vertex of M, then

3
L(p;r) = 7
holds.
(11) Let M be the closed surface that consists of the surface of a right circular
cylinder with radius R and with finite height covered by two flat discs with radius R.
If p is a point in one of the two edges of M, then

L(p;r) =27r — %TQ +O(r")

holds.

We give another application of the curvatures defined above. A piecewise-smooth
surface M is said to be developable if it is isometric to a planar region €2 (that is, there
exists a Lipschitz continuous bijective mapping F' from M onto €2 which preserves the
length of each curve). Since developable surfaces can be constructed by bending a flat
sheet, they are important in manufacturing objects from sheet metal, cardboard, and
plywood. If M is smooth, then it is locally developable if and only if the Gaussian
curvature of M vanishes everywhere.

Theorem 1.4 ([5]). Let M be a piecewise-smooth surface in R®. Then, it is locally
developable if and only if S(p) = ke(p) = K(p) =0 for allp € M.

This article is organized as follows. In §2, we recall the definition of piecewise-
smooth surface and so-called geodesic polar coordinates for smooth surfaces. In §3, we
give a kind of local form of Theorem 1.2, that is, we give an expansion of the length
of geodesic circles in an smooth angular domain M; around a vertex. We also give a
representation formula for the geodesic curvatures of the boundary arcs of M;. Then,
we give an idea of the proof of Theorem 1.2. The proofs of Theorems 1.3, 1.4 are
omitted.

2 Preliminaries

First we recall the definition of piecewise-smooth surfaces in R?. For our subject
to study in this paper, it is sufficient to consider only compact oriented surfaces
without self-intersection. Let M = U, M; be a 2-dimensional oriented compact
connected topological submanifold of R? possibly with boundary, where each M; is
a 2-dimensional simply connected compact C submanifold of R?® whose boundary
is C*°-regular possibly except finitely many points, and M; N M; = OM; N OM;,
(t,7 € {1,---,pu}, i # j). Such M is called a piecewise-smooth surface, each sin-
gular point of U!_ dM; is called a vertex (more precisely, an extrinsic vertex) of M,



and each maximal C*-regular arc in UY_;0M; is called an edge (more precisely, an
extrinsic edge) of M.

Next we recall geodesic polar coordinates of a smooth surface S in R3 (cf. [7]). Let
Py be a point in S. Take two unit tangent vectors ey, e; of S at Py which are orthogonal
to each other. Then a sufficiently small neighborhood U of F, in S has a so-called
geodesic polar coordinate system (r,6) that satisfies the following properties. There
exists a C* diffeomorphism p = p(r,6) from an open disc D := {(rcosé,rsinf) €
R?|0<6<2m,0<7 <r} where ry > 0 onto U, such that p satisfies the following
properties.

(i) p(0,0) = Py,

(ii) For each fixed p € (0,79) and 6 € [0,27), each arc {p(r,0) |0 <r < p}isa
geodesic in S with arc-length parameter r.

(iii) The geodesic {p(r,8) | 0 < r < p} mentioned in (ii) has angle 6 with e; at Fj.

Set

h<r7 9) = |p9<?”, 9)|7 (5>

where |py(r, #)| denotes the norm of py(r,6). It is known that the following properties
hold.

Lemma 2.1. (i) |p.| =1, (i) p,-ps =0,
(iii) lim, o 2 =1,  (iv) lim, 40 hy = 1,
(v) lim,gh =0, (vi) K =—"t=
(vii) The first fundamental form of S is given by ds®> = dr* + h*d0* in U.

Using (5), (i) and (ii) in Lemma 2.1, the following equalities are easily shown.

Lemma 2.2. (Z) Poo - Pr = —hhh (Z’L) Poo - P = hhg,
(Z”) Prr - Po = 07 (ZU) Prr - Pr = O;
(U) Por - Po = hhr; (UZ) Por - Pr = 0.

3 Outline of the proof of Theorem 1.2

In this section, first we compute the geodesic curvatures of the boundary curves of an
angular domain M;, and by using them we compute the lengths L;(p;r) of geodesic
circles C;(p;r) in M;. And then, we will give an idea to obtain Theorem 1.2.

Let p be a vertex of a smooth piece M;. We consider geodesic polar coordinates
(r,0) around p. We use the same notation as in §2. We assume that the inner angle
of OM; at p is g;. Also we assume that the geodesic circle with center at p and radius
r € (0,79) in M; for sufficiently small rq > 0 is Ci(p;r) = {(r,0) | 6} (r) < 6 < 62(r)}.
Then the length L;(p;r) of C;(p;r) is represented as

07 (r)
Liwir) = | L, 0 do (6)



Let B} = {(r,0}(r)) | 0 <7 < ro}, E? = {(r,02(r)) | 0 < r < 1o} be parts of the
edges of M; meeting at p. Denote the geodesic curvature of E/ at point (r,6?(r)) for
inward-pointing normal by k’gi(r), (1 = 1,2). By computation using Lemmas 2.1 and
2.2, we obtain the following formula ([4]).

Proposition 3.1. For i = 1,2, the geodesic curvature k:gi(r) of B/ at point (r, 0 (r))
for inward-pointing normal is represented as follows.

Fgi(r) =(=1)7 (1 + R*(r, 07 (r)) (6] (r))*)
X [Qhr(ﬁ 0(r))01(r) + ho(r, 07 () (6] (r))?
+ h(r, 6] ()] (r) + hy(r,6] (1)) 1*(r, 67 (1)) (6] (7“))3} : (7)

[

where 7 means the derwative with respect to r.

Using the inner angle and the intrinsic curvatures of OM; and M;, we can represent
the length of the geodesic circle C;(p;r) in M; as follows.

Proposition 3.2. The length L;(p;r) of Ci(p;r) for small v > 0 is represented as

Li(p;r) = (a;)1r + (a;)or? + (a;)sr® + O(r*),

where
(a1 = o, 0
()2 = — (K(0) + K2(0)), (9
(00)s = —5 (Kilp)or + (R (0) + (2 0)). (10)

Proposition 3.2 is obtained by computation using Lemmas 2.1 and 2.2, (6), and
Proposition 3.1 ([4], [5]).

Now, we discuss the proof of Theorem 1.2. Let p = M;N---N My be an extrinsic
vertex of M. If the geodesic circle C'(p;r) in M satisfies

Cp;r) = UL, Cilp;r), (11)

then, from Proposition 3.2, we obtain Theorem 1.2 (i). However, in general (11) does
not hold. By estimating the error term, we obtain Theorem 1.2 (i) ([4], [5]). (ii) of
Theorem 1.2 is obtained from (i) as a specific case.
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