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1 Introduction

The aim of this article is to provide a summary of the results presented
in [9, 10] and in the second author’s thesis [8], which concern pure cactus
groups and configuration spaces of points on the circle.

It is known that the braid group acts naturally on multiple tensor prod-
ucts in a braided monoidal category. As an analogue of this action, Hen-
riques and Kamnitzer introduced the so-called cactus group in [11], which
acts on coboundary categories associated with braided monoidal categories.

We note that their work was motivated by the study of crystal bases,
introduced by Kashiwara in [12]. Although the term “cactus group” was
first coined in [11], the group itself had already been studied in earlier
works, including [4] and [5].

More precisely, for any integer n > 2, the cactus group of degree n,
denoted by J,, is defined by a presentation with generators s,, for 1 <
p < q < n, subject to the following relations:

os§7q:ef0ralllgp<q§n,

i 3p7q5m,7' = Smarsp,q lf [p7 q] m [m7 T] = ®7
® SpgSmr = Sprq—rptg-mSpq i [m,r] C [p, q],

where 1 < m < r < n, e denotes the identity element, and [p, ] is the set
p,p+1,...,q for integers p < q.
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Figure 1: Diagrams for some elements of J,

Similar to the braid group, elements of the cactus group can be repre-
sented by planar diagrams composed of vertical strands. Examples of such
diagrams for Jy are shown in Figure 1.

Owing to this diagrammatic representation, the cactus group J,, admits
a natural projection 7 : J, — S, onto the symmetric group S, of degree
n. The kernel of this projection is called the pure cactus group of degree n,
denoted by PJ,. For further details, see [11, Subsection 3.1] or [7, Section
1].

Also, in [11, Theorem 9], it is shown that the pure cactus group PJ, is
isomorphic to the fundamental group of the Deligne-Mumford compactifi-
cation My ,+1(R) of the moduli space of real genus-zero curves with n + 1
marked points. This space is closely related to the configuration space of
n + 1 points on the circle.

In this article, we report our study the relationship between the pure
cactus group and the compactification of the configuration space of points
on the circle, focusing on the cases where the degree is three or four.

Throughout this paper, we denote the generators of J, using the nota-
tion sq3 (without a comma) instead of s 3, for brevity.



2 Configuration spaces of points on S!

As mentioned above, by [11, Theorem 9], the pure cactus group PJ, is
isomorphic to the fundamental group of the Deligne-Mumford compactifi-
cation My ,4+1(R) of the moduli space of real genus-zero curves with n + 1
marked points.

For k > 3, it is natural to regard My ;(R) as the configuration space of
k distinct points on the circle S'. In this paper, we denote this space by
X (k), which can be explicitly described as:

X(k) = PGL@)\ {(F)" — A},

where A = (x1,...,2y) | z; = z; for some i # j, and the projective general
linear group PGL(2) acts diagonally and freely. That is, there exists a
homeomorphism between M ;(R) and X (k).
On the other hand, a purely combinatorial compactification m was
introduced by M. Yoshida in [17]. See also [13] and [15] for related work.
At present, it is not known whether X (k) is homeomorphic to M ;(R)
in general. However, for k = 3,4, 5, the following are known:

e Both X (3) and M;3(R) consist of a single point.

e Both X (4) and My 4(R) are homeomorphic to S*.

e Both X (5) and M 5(R) are homeomorphic to the closed non-orientable
surface with Euler characteristic —3, namely, the connected sum of five
projective planes.

See [17, 1, 6], for example.

This implies that, for n < 4, the pure cactus group P.J, is isomorphic
to the fundamental group of X (n + 1), using My ,+1(R) as an intermediate
space. Thus, the following question arises naturally:

Question. Can one show that P.J, is isomorphic to m (X (n + 1)) without
using M +1(R) ?

The following theorem provides an affirmative answer in the case n = 3.

—~——

Theorem 1 ([9]). Let X(4) be the universal cover of the space X(4), en-
dowed with the action T of the fundamental group m (X (4)) of X(4) as deck
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transformations. Let C312 be the Cayley complex of the subgroup J;Q} of
the cactus group Js. Then there exists an action I' of PJ3 on 03{2} and a

bijective equivariant map ¢ from X(4) to C3 with respect to the actions
of I' and T, i.e., for any g € PJs, there exists g € m(X(4)) such that the
following diagram commutes;

—_ .

X)) o X[

0| | ¢
o2 Loy o2

The theorem above implies the following immediately.

Corollary 1. The pure cactus group PJs of degree three is isomorphic
to the fundamental group m (X (4)) of the compactification X(4) of the
configuration space of four points on the circle.

Here, we recall the definition of the Cayley complex. Let G be a group
and S a generating set of G. The Cayley graph of G with respect to the
generating set S is the graph whose vertex set is G, and whose edge set is
{9,95 | g € G,s € S}. The cell complex obtained by attaching 2-cells to
each cycle formed by the relations of G is called the Cayley complex of G
with respect to S.

We now introduce the subgroup of J3 used in the theorem above. In
general, for each integer n > 2 and subset S C [2,n], let J2 be the subgroup
of J,, generated by the elements s, , for 1 < p < ¢ < nsuch that g—p+1 €
S, and defined by the following relations:

2 pum—

[
Sp7q

e for every 1 < p < q < n satistyingg—p+1€ 5,

® S, Smyr = SmasSpg for every 1 < p < g<mnandl <m<r <n
satisfying [p,q]N[m,r]=0and g—p+1€ S,
® S, 4Smr = Sprq—rptqe—mSpgforeveryl <p<g<nandl <m<r<n
satisfying [m,r] C [p,q) and ¢ —p+1 € S.
For more details, see [7, Section 5]. Under this setting, the subgroup J;Q}
of J3 is defined for S = {2} C {2, 3}. It is the subgroup of J; generated by
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s12 and $o3 (excluding s13), with the presentation:
P P
<812, 5923 ‘312 - 323 - €> .

It follows that J?;{Z} is isomorphic to Zs * Zs.

For the proof of the theorem above, please refer to [9]. The key is the
action of PJ3 on the Cayley complex C31% which is homeomorphic to the
real line R.

Actually, this action on C,>"1

for PJ, is essentially obtained in [7].

(0)
Proposition 1. Let (Cn[2’”_1]> denote the 0-skeleton of the Cayley com-
plex C’n[z’”_l], whach 1s tdentified with J,[LQ’n_l]. The map

Ty: PJ, X (CH[Q’"”)(O) — (Cn@’"”)m)

defined by

gh  ifghe J,B Y,
ghsia if gh & JPmY

induces a group action I' of PJ, on c, =1,

(9,7) = (To)g(h) == {

3 A presentation of PJ,

Hereafter, we focus on the cactus group Jy of degree four. Recall that J,
has the following presentation:

2 2 2 2 2 2

S19, 593, S34 S19 = Sg3 = S34 = S13 = Sg4 = S14 = 6,
) ) )
Sia Son. S 512834 = 534512, S12513 = S13523, S23524 = S$24534,
13,924,214
512514 = 514534, 523514 = 514523, S13514 = S14524

As noted in the previous section, both X (5) and Mj5(R) are homeo-
morphic to the closed non-orientable surface of Euler characteristic —3,
which is the connected sum of five projective planes. This implies that
PJ, admits the following presentation:

(a1, a9, a3, oy, a5 | ddasa3aiad = e) (1)
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On the other hand, another explicit presentation of P.J; was obtained
purely algebraically in [3, Appendix A], using the Reidemeister—Schreier
method. In fact, as [3, Theorem 5.5] states, it was shown that P.J; has the
following presentation:

(a, B,7,0,€ | aveBea™ 07 Byd " =€) (2)

This presentation is a simple one-relator presentation with five gener-
ators, but it does not appear to be directly related to the presentation
described above in the presentation (1). Indeed, as noted in [3, Remark
5.6], it seems difficult to express the generators oy in terms of the standard
generators s; ; of the full cactus group Jj.

In [10], we obtain another presentation of P.Jj,.

Theorem 2. The pure cactus group P.Jy admits the following presentation:

91910 92 = 9995 191 = 959195
gi,---,910| _ -1 _ -1 -1 -1 _
= 9891097 = 9893 94 = G29997 g9 = €

This presentation can be transformed into the following:

(92, 91, 8, 99, 910 | 9299970 95 91999291095 91" = €)

We remark that the generators g; given above are explicitly described
in terms of the standard generating set {s;;} of the cactus group .J; and
are of minimal word length with respect to {s;;}. That is, each ¢; has word
length 4 or 5, and there are no elements in P.J; whose word length is less
than or equal to 3.

We can confirm that the presentation in Theorem 2 is equivalent to the
presentation (1), as well as to the presentation (2) given in [3]. See [10] for
details.

The key to our proof of Theorem 2 is to consider the action of P.J; on
the Cayley complex 423 of the subgroup Jf’?’], as given in Proposition 1.
In fact, the subgroup me is generated by $19, So3, S34, S13, S24 (excluding
s14), and has the following presentation:

2 2 2 2 2
STo = S50 = S5, = ST = S5, = €
12 23 34 13 24 )
S12, 523, 534, 513, S24 = o . .
512834 = 534512, S12513 = 513523, S23524 = S24534
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It follows that the Cayley complex C4%? is isometric to the hyperbolic
plane H? up to scaling. See Figure 2 for a local picture of the complex,
and compare it with Figure 3.

513524

513534

513523

513512
$23512 Sios
12523
523534
512524
534512
534513

524512
524513

594523 534523

Figure 3: The {4,5}-tesselation of the

Figure 2: Neighborhood of e in the Cayley hyperbolic plane. ([2, Figure 7])

complex €,

Here we give an outline of the proof of Theorem 2.
First, through brute-force enumeration, we listed all the elements of PJ,
whose translation lengths are at most 4 with respect to the action on Jy 23]

As a result, we obtained the ten elements g, ...
PJ, below.

, g10 and their inverses in

g1 = 513524512534514
g3 = 513534523512514
g5 = 523512523513

g7 = 523534513534514
g9 = 524512523534514

g2 = 513524513524
g4 = 513534513523514
g6 = 523512524512514 ,
g8 = 524534523534
g10 = 524523513534514

In fact, if d(e,g - €) < 4 holds for some g € PJy, then g = giil for some
1 <i <10, and in fact, d(e, g; - €) = 4.

Using these elements, we can construct the Dirichlet polygon D in H? &
C4%% centered at e for the action of P.J,. This polygon is illustrated in
Figure 4.



Figure 4:

The polygon D has 20 sides. Note that ten of these sides are not edges
of the Cayley complex C3): rather, they are diagonals of certain 2-cells
(quadrangles) in the complex. Also, note that the interior angles around
the vertices of D are %”, 3?”, or 4%.

The elements g¢i,...,g10 and their inverses define the side identifica-
tions of D in H? = ¢, Moreover, we can confirm that a complete
hyperbolic surface is constructed after the identifications. Then, by virtue
of the famous Poincaré Polygon Theorem (cf. [16, 14]), it follows that
g1, ..., g0 generate PJy, and the compositions of generators gsg, 1 9799 Yoot



9395 91> 9599 91 ' 959105 > 9sgiogy ' giogy ga form a complete set of re-
lations. Thus, we obtain the following presentation of P.J, as desired: See

[10] for details.
Finally, we give an explanation of how to find the correspondence be-
tween the following two presentations:

(a1, a9, a3, oy, a5 | Adasa3aiad = e),
< — | 9395 19799: gy = 9s9y tg = 959 gt >
7 ’ = 059196 = 9891097 = G109 g2 = €

Viewing the fundamental polygon D, we see that the painted regions in
Figure 5 give five Mobius bands embedded in C, 27 /PJ,. After removing
them, we can rebuild the remaining parts to obtain a sphere with five
holes. See Figure 6. Then we can confirm that 04[2’3] /P Jy is homeomorphic
to the connected sum #;RP? of five real projective planes. Setting the
closed curve as in §5RP? shown in Figure 6, we obtain a correspondence
Q9 > g3 ' g1gegagro € PJy by considering a lift of ay in C4*3 In the same
way, we can obtain the corresponding elements in PJy for a1, as, a4, as.

7 N
v » "
" v
« 7
Figure 5: Five Mobius bands Figure 6: Finding the generator a,



4 PJ,and X(5)

As a consequence of the previous section, it can be proved that PJy is iso-
morphic to the fundamental group of the connected sum of five projective
planes, which is in turn isomorphic to 7 (X (5)). In this section, we provide
an alternative proof by constructing a homeomorphism directly between

/P, and X(5).

Theorem 3. Let X(5) denote the compactification of the configuration
space X (5) of five points on the circle. Let C4%% be the Cayley complex of

the subgroup Jf’?’] of the cactus group Jy. Then X (5) is homeomorphic to
the quotient space of O3 under the action of the pure cactus group P.Jy
of degree four.

Corollary 2. The pure cactus group PJy of degree four is isomorphic to

the fundamental group m (X (5)), where X (5) is the compactification of the
configuration space of five points on the circle. ]

We give a brief review of the cell complex structure of X (5) studied
in [1, 17]. Each 2-cell of the complex X (5) corresponds to a connected
component of X (5), that is, a configuration of five distinct points, say 0, 1,
2,3, 4, on S'. In the following, for example, the 2-cell corresponding to the
configuration of points 0, 1,2, 3,4 in clockwise order is coded by [1,2, 3, 4].
Note that [1,2,3,4] and [4, 3,2, 1] refer to the same 2-cell. Then, there are
twelve 2-cells in X (5):

[1234], [2134], [4123], [1324], [2341], [1243),
3124], [3412], [3241], [2314], [2431], [3142].

Two 2-cells are adjacent in X (5) if one is obtained from the other by
switching a pair of adjacent points. See Figure 7 for an example. Note
that the 2-cells [1234] and [4123] = [3214] are adjacent; this corresponds
to switching the points 0 and 4.

Then, the entire cell complex structure and its dual of W are visu-
alized in Figure 8. In the figure, the 12 pentagons represent the 2-cells of
X(5) (i.e., the connected components of X (5)).
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[1234] [2134]

Figure 7: Adjacent 2-cells; [1234] and [2134]

In the following proof, we consider the dual cell complex structure of
X (5). That is, the vertices (0-cells) are labeled by [1234], [2134], and so
on.

Proof of Theorem 3. We consider the cell complex structure on the surface
F = Cf’g'] /PJ, induced naturally from C’f’g]. See Figure 4. There are 15
2-cells (quadrangles) and 30 1-cells (edges).

Set the following correspondence ¢ between (X (5))? and (CE’?’] /PJy)°.

1234 —s [¢]
[2134] — [812]
[4123] — [813]
[1324] — [823]
2341] —s [s04]
[1243] — [834]
[3124] — [813823]
[3412] — [813824]
[3241] — [813834]
[2314] — [813812]
[2431] — [824823]
[3142] — [813824823]

Let us show that this correspondence induces a well-defined, bijective
cell map between X (5) and F = CZEQ’S]/PJ4.

11



Figure 8: Cell complex structure of X (5) and its dual.

It is sufficient to prove that each set of vertices that span a cell in X (5)
is mapped to a set of vertices that span a cell in F.

We list all of the 2-cells in X (5):
([3124], [1324], [2314], [2134]), ([3124], [3142], [1342], [1324]),
([3214], [3142], [1342], [1324]), ([3412], [1243], [3124], [3214]),
([3412], [2134], [1234], [1243]), ([3412], [1432], [1342], [2134]),
([3142], [4132], [1432], [3412]), ([3142], [1342], [2134], [4132]),
([4231], [3241], [1243], [1342]), ([1324], [1234], [1432], [3241]),
([1432], [3241], [3214], [2314]), ([1342], [1243], [1234], [1432]),
([1234], [2134], [3124], [3214]), ([1234], [1324], [2314], [3214]),
([3214], [3412], [3142], [3241]).
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In the above list, for example, ([3124],[1324],[2314],[2134]) indicates
a cycle of the vertices in this order. See Figure 8. For instance, let us
consider the case of the 2-cell ([3124],[1324],[2314], [2134]) in X (5). The
vertices [3124], [1324] [2314], and [2134] correspond to [s12], [s13512], [S23],
and [s13523] in C’ % by ¢, respectively.

By the definition of the Cayley graph, we have:

<[812], [313823]> = <[812], [312813]>, <[$13812], [823]> = <[323813], [323]>,

which are edges in C’f’?’}. The element s13512 is mapped to s12593 under the
identification g; ' as follows.

-1 -1
gs S13512 = (823512323813) 513512 = 512523512513513512 = 512523

Therefore, ([s12],[s13512]) becomes a 1-cell in F| since {sy2, 512523} is an
edge of the Cayley graph of Jf’?’] and [s13512] = [S$128923] holds in F'. In the
same way, since gs(Si3se3) = S93S12, the pair ([sqs)], [s13503]) also forms a
I-cell in F. Tt follows that the vertices [s12], [$13512], [S23], and [s13503] form
a cycle in F'. By the definition of the Cayley complex, these vertices span
a 2-cell: <[812], [813812], [823], [813823]> in F.

The following calculations show that the other 2-cells are similarly mapped
to 2-cells in F.

([3124], [3142], [1342], [1324]):

©([3124]) = [s13523] = [g5 ' (s23512)] = [91(534513)]

p([3142]) = [s13524523] = [93(334813812)] = [93(95 ' (s23534512))]
o([1342]) = [s24523] = [g5 " (s23534)]

p([1324]) = [s23]

([3214], [3142], [1342], [1324]):

©([3124]) = [s13523] = [g1(534513)]
p([1243]) = [s54]

©([3214]) = [s13534] = [g3(534523)]
p([3142]) = [gs(s31513512)]
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([3412], [1243], [3124], [3214]):

p([3412]) = [s13524] = [g1(834512)]
©([1243]) = [s34]

p([3124]) = [s13523] = [g1(534513)]
p([3214]) = [s13)]

([3412], [2134], [1234], [1243]):

©([3412]) = [s13524] = [g1(512534)]
©([2134]) = [s12]

p([1234]) = [e]

p([1243]) = [s34]

(3412, [1432], [1342], [2134]):
©([3412]) = [s13524] = [g2(524513)] = [g1(512534)]
p([1432]) = [s24]
©([1342]) = [s24523] = [g10(512524)]
©([2134]) = [s12]

([3142], [4132], [1432], [3412]):

©([3142]) = [s13524523] = [92(324813823)]
p([4132]) = [s13512] = [g5 " (524512)]
p([1432]) = [s04] = [910(812824)]
p([3412]) = [s13504] = [g2(524513)]
([3142], [1342], [2134], [4132]):
©([3142]) = [s13524523] = [92(524513523)] = [92(go(512524534))]
p([1342]) = [s94823] = [g10(512524)]
p([2134]) = [s19]
©([4132]) = [s13512] = [g5(512523)] = [ga(524512)]

([4231], [3241], [1243], [1342]):

p([4231]) = [s23]

©([3241]) = [s13534] = [ga(s23524)] = [g3(534523)]
p([1243]) = [s34]

p([1342]) = [s24523] = [g5 ' (523534)]
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([1324], [1234], [1432], [3241]):

©([1324]) = [s23]

p([1234]) = [e]

p([1432]) = [s34]

©([3241]) = [s13834] = [g3(534523)] = [94(524534)]
([1432], [3241], [3214], [2314]):

p([1432]) = [s24]
p([3241]) = [s13534] = [ga(524534)]
p([3214]) = [s13]
p([2314]) = [s13512] = [ga(524512)]
([1342], [1243)], [1234], [1432]):
p([1342]) = [s24523]
p([1243]) = [s34]
p([1234]) = le]
p([1432]) = [s24]
([1234], [2134], [3124], [3214]):
p([1234]) = [¢]
p([2134]) = [s12]
p([3124]) = [s1352]
p([3214]) = [s13]
([1234], [1324], [2314], [3214]):
p([1234]) = [e]
©([1324]) = [s23]
p([2314]) = [s13512]
p([3214]) = [s13]
([3214], [3412], [3142], [3241]):
p([3214]) = [s13]
p([3412]) = [s13524]
p([3142]) = [s13534]

([3241]) [813824823]

Thus, each 2-cell in X (5) is mapped to a 2-cell in ' under ¢, and hence ¢
defines a bijective, cellular map. Consequently, ¢ is a homeomorphism. [
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