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1 Introduction

A quandle, introduced by Joyce [2], is an algebraic system whose axioms have close
relationships with Reidemeister moves for oriented knot diagrams. For each quandle
X, we may consider X-colorings of an oriented knot diagram. It is well-known that a
Reidemeister move naturally relates the X-colorings of the original diagram to the ones
of the deformed diagram, one-to-one onto.

We may deform an oriented knot diagram to itself by a finite sequence of Reidemeister
moves. On the other hand, the X-colorings of the diagram related to each other by the
sequence are not always the same. Then we have a natural question: which X-colorings
of a diagram are related to each other by a finite sequence of Reidemeister moves? To
consider the above question, the author introduced the R-equivalence relation on the set
of X-colorings of an oriented knot diagram [5].

In this report, we review the notion of R-equivalence relation and determine the R-
equivalence classes of colorings of diagrams of the square knot and the granny knot by
the dihedral quandle of order 3, for example. We assume that each knot is embedded in
R3, throughout this report.

2 R-equivalence for quandle colorings

In this section, we review an equivalence relation, named R-equivalence relation, on the
set of quandle colorings of an oriented knot diagram introduced in [5]. To do it, we start
with reviewing the definitions of a quandle and a quandle coloring briefly. More details
can be found in [3], for example.

A quandle is a set X equipped with a binary operation * : X x X — X satisfying the
following three axioms.

QL. Forany z € X, zxx = .

Q2. There exists a binary operation * 1 : X x X — X satisfying (z xy) 1y = (zx 1 y)*
y = x for any x,y € X.

Q3. For any x,y,z € X, (z*xy) *z = (x x 2) * (y * 2).



For example, the cyclic group Z/nZ equipped with a binary operation * given by
TxyY=2y—2x

becomes a quandle for each positive integer n > 3. We call it the dihedral quandle of
order n and write as R,,.

Let X be a quandle and D an oriented knot diagram. An X-coloring of D is a map
% from the set of all arcs of D to X satisfying the condition depicted in Figure 1 at each
crossing of D. In the figure, x, y and x*y denote elements of X assigned to correspondent
arcs by % and we call them the colors of the arcs. We note that a constant map from
the set of all arcs of D to X obviously satisfies the condition for an X-coloring. We thus
call it a trivial X -coloring of D. The Rs-colorings of the diagram T'K of the trefoil knot
are depicted in Figure 2, for example. We note that the trivial colorings of T K are %y,
Cgl and ng.

Figure 1: The condition for an X-coloring.
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Figure 2: The Rs-colorings of the diagram TK of the trefoil knot.

It is well-known that, for each quandle X, a Reidemeister move yields a one-to-one
correspondence between the set of X-colorings of a diagram D and that of a diagram



D’ obtained from D by the Reidemeister move. Indeed, for each X-coloring € of D, we
have a unique X-coloring ¢’ of D’ which assigns the same colors with & for the arcs
unrelated to the deformation and consistent colors for the others as depicted in Figure 3.
We note that the axioms of a quandle guarantee the existence and uniqueness of ¢”. A
planar isotopy also yields a one-to-one correspondence between the set of X-colorings of
a diagram D and that of a diagram D’ obtained from D by the planar isotopy, assigning
the same colors to the correspondent arcs. In conclusion, if a diagram D’ is obtained
from a diagram D by a finite sequence of Reidemeister moves and planar isotopies, we
have a unique X-coloring ¢” of D" corresponding to an X-coloring ¢ of D. We say in
this situation that %” is obtained from % by the sequence, or % is related to %’ by the
sequence. Obviously, the number of X-colorings gives us an invariant of oriented knots.
We call this number the X -coloring number and write as colx (D).
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Figure 3: Reidemeister moves relate X-colorings of the diagrams uniquely.

Let %1 and %3 be X-colorings of a diagram. We say that %, is R-equivalent to %7 if
%, is obtained from %] by a finite sequence of Reidemeister moves and planar isotopies.
Obviously, R-equivalence yields an equivalence relation on the set of X-colorings of the
diagram. It is easy to see that, for each quandle X and diagram D, a trivial X-coloring
of D is not R-equivalent to any other X-colorings of D.

Let us consider which Rs-colorings of T'K depicted in Figure 2, are R-equivalent to
each other, for example. As stated above, %), %1 and %5 are respectively not R-equivalent
to any other colorings. Since %3 and %5 are respectively obtained from %3 by the 2?“— and
4?’T—lrotatioms of the plane on which the diagram written, 3, €, and %5 are R-equivalent to
each other. Similarly, %5, %7 and %3 are R-equivalent to each other. Furthermore, since
% is obtained from %3 by a finite sequence of Reidemeister moves and planar isotopies
as illustrated in Figure 4, %3 and %3 are R-equivalent to each other. Thus, all non-



trivial colorings are R-equivalent to each other. Since the number of elements of each
R-equivalence classes is 1, 1, 1 and 6, we can divide the R3-coloring number as

olp,(TK) =9=1+1+1+6.

Figure 4: %3 is obtained from %3 by a finite sequence of Reidemeister moves and planar isotopies.

Remark 2.1. For some quandle X, let 4, and %5 be X-colorings of a diagram D. Fur-
thermore, let @/ and %, respectively be X-colorings of D" obtained from %) and % by
a finite sequence of Reidemeister moves and planar isotopies. Then %] and %, are R-
equivalent to each other if and only if 47 and %, are. Therefore, the division of the
X-coloring number into the sum of the cardinalities of the R-equivalence classes gives us
an invariant of oriented knots.

3 Example

In this section, we determine the R-equivalence classes of the R3-colorings of the diagram
SK of the square knot (depicted in Figure 5) and the ones of the diagram GK of the
granny knot (depicted in Figure 18), for example. We first study the R-equivalence classes
of the R3-colorings of SK.

It is routine to check that SK has twenty-seven Rs-colorings depicted in Figure 5. In
the figure, (), [J, and A denote some elements of R3 which are mutually different. Since
they are trivial colorings, each coloring of Type A is not R-equivalent to any other colorings
as mentioned in Section 2. To investigate the R-equivalence classes of the non-trivial
colorings, we consider the deformations 1-4 of SK depicted in Figures 6-9, respectively.
Then it is routine to check that any two colorings of Type B (respectively C') are related
to each other by a finite sequence of deformations 2, 3 (respectively 1, 4) and their
inverses. Therefore, any colorings of Type B (respectively C') are R-equivalent to each
other. Furthermore, it is routine to see that any two colorings of Type D or E are related



to each other by a finite sequence of deformations 1-3 and their inverses. Therefore, any
colorings of Type D or E are R-equivalent to each other.

In fact, the set of non-trivial colorings is divided into the above three R-equivalence
classes. To show that, we review the following things. More details can be found in [3],
for example.

Figure 6: Deformation 1 of SK.

Let X be a quandle, D an oriented knot diagram and 4 an X-coloring of D. A region
coloring of D is a map & from the set of all regions of D to X satisfying the condition
depicted in Figure 10 around each arc of D. In the figure, y denotes the element of
X assigned to correspondent arc by 4 and x and z * y denote the ones assigned to
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Figure 9: Deformation 4 of SK.

correspondent regions by #Z. We call x and = x y the colors of the regions. The pair
(€, %) of the X-coloring ¢ and the region coloring Z is called a shadow coloring of D
by X. In a similar way to X-colorings, if a diagram D’ is obtained from a diagram D by
a finite sequence of Reidemeister moves and planar isotopies, we have a unique shadow
coloring (€', %') of D' corresponding to a shadow coloring (%, %) of D. We also say in
this situation that (¢”,%’) is obtained from (¢, %) by the sequence, or (¢, %) is related
to (€', %') by the sequence. We note that ¢” is the X-coloring obtained from % by the
sequence.

(3]
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Figure 10: The condition for a region coloring.

Remark 3.1. Let x5 be an element of X. Then there is a unique region coloring of D
whose color of the unbounded region is xy with respect to any X-coloring of D.

Let X be a quandle and A an abelian group. A map f : X® — A is said to be a
quandle 3-cocycle if f satisfies the following two conditions.

QC1. For any z,y,z,w € X,

flz,y,2) + flzxz,y* z,w) + f(z,z,w)
= flxz*y,z,w) + f(2,y,w) + f(z*w,y*w, z xw).

QC2. For any z,y € X, f(z,z,y) = f(x,y,y) =0.
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For example, a map f : Rp3 — Z/pZ given by

Y+ (22 =y — 27

f(z,y,2) = (z —y) P

is a quandle 3-cocycle of R, for each odd prime integer p [1, 4]. We call it the Mochizuki
3-cocycle.

Suppose that f : X? — A is a quandle 3-cocycle of a quandle X. Let (¢, %) be a
shadow coloring of an oriented knot diagram D by X. For each crossing ¢ of D, whose
arcs and regions are colored by (¢, %) as depicted in Figure 11, we define a local weight

We(e, €, Z) of (€¢,%) at c by
We(e, ¢, Z)=¢- f(x,y,2),
where € = +1 if ¢ is positive, otherwise ¢ = —1. Take the sum

Wi(D, €, %) => Wy, %, %)

of the local weights over all crossings of D and call it the weight of (¢, %). 1t is easy to
see that if a shadow coloring (¢”, %Z’) of D’ is obtained from (%, %) by a finite sequence
of Reidemeister moves and planar isotopies, then we have W (D', ¢",Z) = W;(D,€¢, %)
(see Figure 12).

Figure 11: Colors around a positive (left) or negative (right) crossing c.

Let ¢ and ¥’ be X-colorings of D which are R-equivalent to each other. Choose
and fix an element xy € X. Then, in light of Remark 3.1, we have the region coloring
X (respectively #') with respect to € (respectively 4¢”) whose color of the unbounded
region is xg. Since the colors of the unbounded regions are preserved under Reidemeister
moves and planar isotopies, a finite sequence of Reidemeister moves and planar isotopies
which relates € to € relates (¢,%) to (¢',%'). Therefore, we have W;(D, ¢, %) =
WD, €'\ %").

We are now ready to determine the R-equivalence classes of SK. Let f be the
Mochizuki 3-cocycle of R3. Furthermore, with respect to each Rs-coloring & of SK,
let Z be the region coloring of SK whose color of the unbounded region is 0. Then we
have

0 if € isof Type A, D, E,
Wi(SK, ¢, %) =<1 if € isof Type B,
2 if € is of Type C.
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Figure 12: Reidemeister moves do not change the weights of shadow colorings of the diagrams.

Since weights of them are mutually different, a coloring of Type B, one of Type C, and
one of Type D or E are not R-equivalent to each other. Therefore, the R-equivalence
classes of the R3-colorings of SK are completely determined.

We next study the R-equivalence classes of the Rs-colorings of GK. We note that
we respectively have the deformations 1-4 of GK depicted in Figures 13-16, in a similar
manner to SK. Moreover, we have the deformation 5 of GK depicted in Figure 17.

As well as SK, GK has twenty-seven Rsz-colorings depicted in Figure 18. Since they
are trivial colorings, each coloring of Type A’ is not R-equivalent to any other colorings.
It is routine to check that any two colorings of Type B’ (respectively C’) are related to
each other by a finite sequence of deformations 2, 3 (respectively 1, 4) and their inverses.
Moreover, the deformation 5 relates a coloring of Type B’ to one of Type C’. Therefore,
any colorings of Type B’ or C" are R-equivalent to each other. It is routine to see that
any two colorings of Type D’ or E’ are related to each other by a finite sequence of
deformations 1-3 and their inverses. Therefore, any colorings of Type D’ or E’ are R-
equivalent to each other.

Let f be the Mochizuki 3-cocycle of Rj3, again. Furthermore, with respect to each
Rs-coloring € of GK, let Z be the region coloring of GK whose color of the unbounded
region is 0. Then we have

0 if € is of Type A,
WiGK,€¢,Z) =11 if € is of Type D' or E',
2 if € is of Type B’ or C".

Since weights of them are mutually different, a coloring of Type B’ or C’, and one of Type
D' or £ are not R-equivalent to each other. Therefore, the R-equivalence classes of the
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Figure 18: The Rs3-colorings of the diagram GK of the granny knot.

Rs3-colorings of GK are also determined completely.
As a consequence, we can divide the R3-coloring numbers of SK and GK as

colp, (SK) =27=1+1+1+6+6+ 12,
colp,(GK) =27T=1+1+1+12+12.

Therefore, in light of Remark 2.1, we obtain the well-known fact that the square knot
and the granny knot have different knot types by studying R-equivalence classes of their
Rs-colorings. The difference of the divisions of the Rs-coloring numbers of SK and GK
is caused by that GK admits the deformation 5 while SK does not. It means that
difference of symmetries which the square knot and the granny knot equip is reflected to
the R-equivalence classes of the Rsz-colorings of SK and GK.
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