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1 Introduction

Skein modules were introduced by Przytycki [31] and Turaev [37], and enjoy numerous
connections to different areas of mathematics including quantum field theory [1], character
varieties [4, 33], and cluster theory [2, 28]. It was conjectured by Witten and proved by
Gunningham—Jordan—Safronov [13] that skein modules of closed, compact, oriented 3-
manifolds are finite-dimensional over C(¢q'/?). However, the proof is not constructive and
the computation of the dimensions of skein modules remains a problem of interest.

The earliest computations of skein modules were for lens spaces and S? x S* [17, 18].
Since then, skein modules have been computed for integer Dehn surgeries along a trefoil [3],
the quaternionic manifold [11], some prism manifolds [27], and some families of hyperbolic
manifolds obtained by Dehn filling of knot complements [7]. The dimension was computed
for the 3-torus by Carrega [5] and Gilmer [10], and this was generalized to the trivial S*-
bundle over any closed surface in [12, 8]. In [22] the skein modules of mapping tori of the
2-torus were computed, and the purpose of this article is to give an exposé of some of the
key ideas used in the proof.

If v € Mod(T?) = SLy(Z) = (S,T|S* = 1, (ST)? = S?) is a mapping class, we denote
the corresponding mapping torus by M,. The result of [22] can be stated as follows.

a b

Theorem 1.1. Let v = <c d) € SLy(Z). Then dim Sk(M.,) is as follows:

o |tr(y)| = 0: then dim Sk(M,) = 6.
o |tr(y)| = 1: then dim Sk(M,) = 4.
o |tr(v)| = 2: then vy is conjugate to £T™, and

9+k n=2k

dim Sk(M) = {6—|—k: n=2k+1"

o |tr(y)| > 2: then
dim Sk(M,) = [tr(y)| 4 2¢€)H

where
c(y) = #{m € {ged(a — 1,b,c,d — 1), tr(7)} : m even}.



The above theorem has the advantage that within each case, the formula for the skein
module dimension is elementary to state. In [22], a single formula was given which does
not require the mapping classes to be separated by the absolute value of their trace.

Theorem 1.2. Let v € SLy(Z). Then dim Sk(M,,) is given by

"+ oqf 4 op+ - a4+ 2P
dim Sk(M,) — s, + LLi=1 “ A | ] +

where v+ is the rank and a; are the invariant factors of Id F v, and

pr = F#{aF even:1<i<ry}

and ~
4 y=1d
sy=42 tr(7) =0 mod 2 and 7 #Id
1 tr() =1 mod 2
for 7 the matriz of v taken mod 2 in each entry.

One advantage of the formula of Theorem 1.2 is that it reflects the structure of the
calculation, which we will describe in this article. It was not noticed by the author that
the alternative statement, Theorem 1.1, can be obtained from Theorem 1.2, until after
the publication of [22].

The dimensions of Theorem 1.2 lead to the observation, due to R. Detcherry, that there
does not exist an oriented (3 + 1)-TQFT which assigns skein modules to 3-manifolds and
yields the natural actions of mapping class groups on skein modules. Essentially, a TQFT
would allow us to calculate traces of mapping class group actions on 3-manifolds, and in
particular the dimensions of Theorem 1.2 will appear as traces of the mapping class group
of the 3-torus. But in the case of the 3-torus the natural mapping class group action is
already well-understood due to work of Carrega [5], and the dimensions of Theorem 1.2
do not appear as traces.

Another implication of Theorem 1.2 is as follows. For the lower bound on the dimen-
sion of the skein modules of circle bundles over closed surfaces obtained in [12] Gilmer—
Masbaum introduced the so-called evaluation map, which takes a Kauffman bracket skein
and produces an almost-everywhere-defined C-valued function on the set of even order
roots of unity. Their lower bound is obtained by finding skeins which are linearly inde-
pendent under the evaluation map. Injectivity of the evaluation map would allow one to
conclude the lower bound is optimal. However, it was shown in [23], using the computa-
tions of Theorem 1.2, that the evaluation map is not injective in general. In the case of
circle bundles over a surface, optimality of the bound from [12] was shown by different
means in [8].

In the remainder of this article we will explain some key elements of the proof of
Theorem 1.2. To complement the paper [22], we will try to emphasise important results
used in the proof in different language to that of the original paper. In particular, in [22],
results of [15] are used which can be phrased in terms of skein categories. In this article,
we avoid mention of skein categories and aim to give a sketch of the main ideas which are
accessible to a reader unfamiliar with the skein category construction.



In Section 2 we recall skein modules. As well as the Kauffman bracket skein module,
which is the main object of Theorem 1.2, we also introduce and give some remarks on
the SLy and GLy-skein modules, to which some of our techniques can be extended. In
Section 3 we point out the key observations in the proof of Theorem 1.2 in non-categorical
terms. For completeness we describe how Theorem 1.1 is obtained from Theorem 1.2. We
also remark on generalizations of our calculations to SLy and GLy skein theory.
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2 Skein modules

In this section we recall the definition of Kauffman bracket skein modules, to which our
main results apply. We also describe their generalization to and SLy and GLy skein
modules, to which some of our techniques can be generalized.

2.1 Kauffman bracket skein modules

The Kauffman bracket skein module Sk(M) of a 3-manifold M is the C(¢'/?)-vector space
spanned by isotopy classes of framed links embedded in M, modulo the Kauffman bracket
relations shown in Fig. 1, which are applied in any embedded ball in M. The equivalence
class of a given link is called a skein.

Figure 1: The Kauffman bracket skein relations.

The Kauffman bracket skein module of S is 1-dimensional: given a knot K, this
evaluates to a scalar multiple of the empty link, where this scalar is the Kauffman bracket
polynomial of K [21]. In this sense, skein modules allow us to generalize the Kauffman
bracket polynomial to study links embedded in an arbitrary 3-manifold.

Let us remark that skein modules can be considered as modules over the ring Z[q*/?] of
Laurent polynomials (indeed this is why they are called skein modules) or over C where
q'/? is specialized to some specific complex number, often a root of unity. However in
this work, we will only ever consider skein modules over C(ql/ %), i.e. when the quantum
parameter is generic.



2.2 SLy and GLy skein modules

The Kauffman bracket is closely related to the representation theory of quantum SLsy. It
follows from work of Rumer—Teller—Weyl [35] that the tensor category generated by the
vector representation V' of U,(sly) is equivalent to the Temperly-Lieb category, whose
objects are collections of points and morphisms are planar 1-manifolds connecting them,
with the relation that a circle can be erased at the cost of (—qg — ¢~'). The category
generated by V' has a ribbon structure, and the Kauffman bracket can be seen as promoting
the Temperly—Lieb diagrammatics to a 3-dimensional calculus for this ribbon category.
This allows us to regard Kauffman skeins as embedded 1-manifolds which locally look like
morphisms between tensor powers of the vector representation.

In general, any ribbon category A has a ribbon calculus: morphisms can be depicted
as framed graphs in 3 dimensions labelled by objects, with vertices labeled by morphisms
from the incoming to the outgoing edges. It is then possible to talk of A-skein module
of M as being spanned by isotopy classes of such graphs embedded in M, where we
impose the relations which would hold in A within any ball embedded in M. This very
general notion of skein module is implied by the generality of the Reshetikhin—Turaev
construction [34]. Taking A to be the category Rep™®U,(g) of all finite-dimensional type
1 representations, for g the Lie algebra of SLy or GLy, gives a definition of SLy- or GLy
skein module.

It is interesting to ask if there are diagrammatic presentations for these skein modules
similar to the Kauffman bracket. There was early work in this direction by Kuperburg
24], who showed how to give a calculus based on trivalent graphs (called webs) for the
category generated by the fundamental representations (exterior powers of the vector rep-
resentation) of U,(sl3). Around the same time, it was noticed in [29] that the HOMFLYPT
polynomial can be computed by resolving a knot into a linear combination of trivalent
planar graphs, which suggested a relation with the representation theory of U,(sly).

These ideas were developed in work of Sikora [36] and Cautis-Kamnitzer—Morrison [6].
In [36], a bracket invariant is defined for graphs which contain only N-valent sources or
sinks, corresponding to the tensor category generated by the vector representation V' of
U,(sly) with the sinks and sources corresponding to the projection to and inclusion of
the (trivial) N-th exterior power. In [6], a category of trivalent sly-webs is defined, with
strands labeled by integers. It is shown that this is equivalent to the category generated
by fundamental representations of U,(sly), thus giving a diagrammatic calculus for this
category.

We therefore have two diagrammatic theories where skeins are embedded graphs which
locally look like morphisms in some category of U, (sly)-representations. It was shown in
[30] that the diagram category implicit in [36] is equivalent to the subcategory of sly-webs
with strands labeled by the vector representation, and moreover that the skein modules
associated to the category of N-valent graphs and the category of sly-webs are isomorphic.
Clearly the former skein module embeds in the latter, and the proof of the isomorphism
amounts to observing that any exterior power is a retract of a tensor power, i.e. there

T

exists a factorization A"V = VEF LW = APV of Id,ky. By inserting Id,ry = ri
into a strand labeled by /\k V' and isotoping r and ¢ to the ends of the strand, it suffices



to consider only webs with strands coloured by V', establishing that the inclusion is also
surjective.

Since every finite-dimensional representation of U, (sly) is a retract of a fundamental
representation, an identical argument shows that the skein module defined via sly-webs
and the skein module more abstractly associated to Repf'd'Uq(slN) are isomorphic. We
may therefore speak unambiguously of the SLy-skein module, which admits diagrammatic
descriptions based on either the N-valent calculus of [36] or the trivalent one of [6] as
preferred.

There is a generalization of sly-webs to gly-webs [26]. As observed in [25, Theorem
6A.1], the proofs of [6] essentially show that gly-webs give a diagrammatic description
of the tensor category generated by the fundamental representations of U,(gly). Again,
since every finite-dimensional representation of U,(gly) is a retract of a fundamental one,
it follows that these diagrammatics can be used to calculate the GLy-skein module.

3 Elements of proof

Here we will sketch some key ideas used to prove Theorem 1.2. We will explain how
to decompose the skein module Sk(M,) into a direct sum, from which the summands of
Theorem 1.2 are seen to count the dimensions of each direct summand.

3.1 Parity grading and cutting torus method
The first observation is the following.
Lemma 3.1 ([5]). For M a 3-manifold, Sk(M) is graded by Hy(M;Z/2Z).

The grading, which featured in the computations of [5, 10, 12, 8], is given by viewing
skeins as homology 1-cycles with Z/2Z-coefficients. This is well-defined since the Kauff-
man bracket skein relations become null in Hy(M;Z/2Z). The upshot in the case of
mapping tori is that any skein wraps the monodromy direction either an even or an odd
number of times, i.e.

Sk(M.,,) = {even skeins} @ {odd skeins}. (1)
This decomposition can be even further strengthened by the following powerful result.

Lemma 3.2 ([15, Corollary 1.7]). Let M be a 3-manifold, and fix T?> C M. Then Sk(M)
is spanned by skeins which intersect T? at most once.

By fixing a copy of T? inside a mapping torus transverse to the monodromy direction,
(1) can be strengthened to the following:

Sk(M,) = Wy & Wy (2)

where W, is the space of skeins which wrap the monodromy direction zero times, and W}
the space of those which wrap once.



3.2 Twisted Hochschild homology

Recall that the skein module of any cylinder ¥ x [0, 1] has an algebra structure, by stacking
skeins in the interval direction, and considered with this structure is known as the skein
algebra, denoted SkAlg(Y).

Considering the map T?x [0, 1] — M., there is an induced linear map SkAlg(T?) — W.
Of course, there is a kernel given by identifying a skein with the result of wrapping it
around the mapping torus and applying the monodromy. Since the source is an algebra,
we can write this kernel as

(ab—(b)a : a,b € SkAlg(T?))
where 7 acts in the obvious way on SkAlg(T?). The resulting quotient is denoted
HH{ (SkAlg(T?))

and called twisted Hochschild homology, since for v = Id this is the usual zeroth Hochschild
homology space of an algebra. Clearly this space is isomorphic to Wj.

Similarly, let us fix a marked point z € T? and consider an algebra E(1,1) spanned by
framed tangles in T? x [0,1] ending at {z} x {0} and {z} x {1}, modulo the Kauffman
bracket relations. As before, the algebra structure is given by stacking, and v acts in the
obvious way, and we see that just as described above we have

Wy = HH{(E 1)

It is shown in [22, §4.1], using observations about the skein theory of T? going back to
P. Samuelson, that
Eq = C(q'?)[F3)

for IFy the field with 2 elements. This is a 4-dimensional algebra, and the action of v can
be described explicitly. It is then straightforward to calculate that

dim HH8<E(171)) = Sy

for s, the number appearing in Theorem 1.2.

3.3 Decomposition of W,

We have now explained the summand s, from Theorem 1.2, which counts the dimension
of the direct summand W, = HH{(E(3,1)) of the skein module. To explain the other two
summands of Theorem 1.2, we must give a further decomposition of the space Wy =
HH] (SkAlg(T?)). Our starting point is the following important description of the skein

algebra.
Theorem 3.3 ([9, Theorem 2|). There is an algebra isomorphism
SkAlg(T?) = AZ/%2

where

A=C(g") (X YH) /(XY - g7V X)
and Z./27 acts by inverting X and Y .



The zeroth Hochschild homology of an algebra is a Morita invariant. It is well-known
that there is a Morita equivalence between A" and the so-called smash product algebra
A#W . Moreover, it is known that the zeroth Hochschild homology of a smash product has
a direct sum decomposition. Tracing through the y-twisted versions of these statements
carefully is the content of [22, §3.1], yielding the decomposition

HH] (AZ/?2) = @ HH}" (A) 222

weZ/2Z

Here the Hochschild homologies on the right are further twisted by a sign, and the sub-
script indicates that we take coinvariants with respect to the natural Z/2Z action on
this space. The two direct summands here explain the appearance of the two remaining
summands in the formula of Theorem 1.2.

It is explained in [22, §3.2] that HH}"(A) is isomorphic to the vector space supported
on the torsion part of coker(Id — yw) where Id — yw acts on H,(T?) = Z?. We recall that
the cokernel of a map of Z-modules has a canonical form:

coker(Id — yw) = Z*™™ @ EBZ/@Z»”Z

i=1

where 7, is the rank of the map and the integers a’ are the so-called invariant factors of
the map.

The natural Z/2Z-action on this space is by negation in each coordinate. The orbits
are generically of cardinality 2, and the dimension of the space of coinvariants is therefore
approximately %Hl a. Whenever a}’ is even, there will be a fixed-point for the Z/2Z-
action, so that the approximate dimension needs to be corrected and the true dimension

1S
Tw QW 4 9Pw
i HH (4, = L=t 8427

where p,, counts the number of even invariant factors. This explains the remaining terms
of the formula of Theorem 1.2.

3.4 Derivation of Theorem 1.1

Firstly, we note that two mapping tori M., M, are oriented-diffeomorphic if and only if
v and ¢ are conjugate in SLy(Z) [16, Theorem 2.6].
We recall (see, e.g. [20, Chapter 7]) that:

e |tr(y)| = 0: then v is conjugate to £S5 for S = <(1] _01>

e [tr(7)| = 1: then v is conjugate to +E*! for F = <i _01)

e |tr(y)| = 2: then 7 is conjugate to £7™ for T' = ((1] D ,nE L.



e |tr(y)| > 2: then conjugacy classes are classified via continued fractions in a way we
do not recall here.

We recall the following elementary facts about the invariant factors of an integer matrix
P. The invariant factors satisfy a;|a;+; and can be calculated by a; = d;/d;—y where d;
is the i-th determinant divisor, the greatest common divisor of the determinants of all
i x ¢ minors of P (we take the convention that dy = 1). Moreover if P is full rank, then
Hi a; = dr = |det(P)|

In the cases where |tr()| < 2, the description of the invariant factors given above
is sufficient to verify the claimed formula in Theorem 1.1 directly from the formula of
Theorem 1.2.

Now assume [tr(y)| > 2. We see that Id F v has full rank since

det(Id F ) = x4(£1) = 2 F tr(y) # 0.

We write a;°, d for the invariant factors and determinant divisors respectively of Id .
We have

%(H af +[[ar) = %(| det(Id — ~)| + | det(Id + ¥)])
_ %(|2 — tr(y)] + 2 + tr()])

= [tr(y)]-

Let us consider the numbers p.. from Theorem 1.2. Writing af as the greatest common
divisor of the matrix entries, we notice that 2ja; <= 2|a;. Then since ai|a3, we see
Py =2 <= p_=2.

Assuming 2 { af, it follows that 2|y <= 2|d;. In this case, writing di = [2F tr(v)],
we see 2lay <= 2|tr(y) <= 2|a;, and so p, =1 <= p_ = 1. It then follows that
pr =0 <<= p_=0.

Then we see that

op+—1 4 gp——1 _ 9¢(7)
for ¢(y) the number in Theorem 1.1. Tt is also easy to see that s, = 2¢(). Then it follows
that

2 2
1
_ oc(v) -1 -1, - + -
=200 4 2P+ 7 - oP +2(‘||ai+‘||ai)

H:il a:r + 2PF i H;;l a; +2°-

Sy + 5 5

— 2¢(0) 4 9¢(M) |tr(7)]|
= 204 4 jta()

which verifies the formula of Theorem 1.1 in the case |tr(y)] > 2.

3.5 Generalizations for SLy and GLy

Now we discuss the aspects of our calculations which admit a generalization to the SLy
and GLy cases. The first step in our proof was to decompose the skein module of the



mapping torus into skeins which wrap the monodromy an even or an odd number of times,
using the grading by H;(M.,;Z/2Z) (Lemma 3.1). This grading admits a generalization
due to D. Jordan.

Lemma 3.4 ([19, §3]). For any G, the G-skein module of a 3-manifold M admits a
grading by Hy(M; Z(G)) for Z(G)" the Pontryagin dual of the centre of G.

Then it follows that for mapping tori,

N-1
Skgr,, (M) = @{skeins wrapping the monodromy n times mod N}
n=0

and
Skary (M) = @{skeins wrapping the monodromy n times}.
neN

These gradings can be strengthened by a more general form of Lemma 3.2.

Lemma 3.5 ([15, Corollary 1.7]). Let M be a 8-manifold, and fix T*> C M. Then
1. The SLy-skein module is spanned by skeins which intersect T? at most N — 1 times.
2. The GLy-skein module is spanned by skeins which do not intersect T?.

This allows us to write the GLy-skein module of a mapping torus in terms of skeins
which do not wrap the monodromy direction. In particular, Skerp,, (M) is the twisted
Hochschild homology of SkAlgqy (T?). In the case of SLy, Lemma 3.5 combined with
the above decomposition yields

=

—1
Skspy (My) = D Wa

n

I
o

for W,, the space of skeins wrapping the monodromy direction n times. Then, just as
before, we have W, = HH{J(E, ) for E(,.) the algebra of (n,n)-tangles modulo the
SL y-skein relations.

In both the GLy and SLy cases we must understand the twisted Hochschild homology
of the skein algebra. A generalization of the presentation as an algebra of invariants in
the SLy case (Theorem 3.3) is given in [14, Corollary 1.12] (see also [14, §4]). Then a
direct sum decomposition of the twisted Hochschild homology is possible via the smash
product, and is given in [22, Corollary 3.6]. In the GL; case, with trivial Weyl group,
it is straightforward to calculate the dimensions and show that they agree with those of
[32], and this is done in [22, Theorem 3.13]. More generally, giving the dimension for the
twisted Hochschild homology of the skein algebra will amount to counting the orbits of
(subgroups of) the Weyl group acting on various twisted Hochschild homologies.

In the SLy case, to understand the whole skein module we will need a description of
the algebras E, ), and the author does not know of an immediate generalization of the
description of E( 1y given in [22, §4.1].



References

[1] Christian Blanchet, Nathan Habegger, Gregor Masbaum, and Pierre Vogel. Topologi-
cal Quantum Field Theories derived from the Kauffman bracket. Topology, 34(4):883—
927, 1995.

[2] Francis Bonahon and Helen Wong. Quantum traces for representations of surface
groups in SLy. Geom. Topol., 15(3):1569-1615, 2011.

[3] Doug Bullock. On the Kauffman bracket skein module of surgery on a trefoil. Pacific
J. Math., 178(1):37-51, 1997.

[4] Doug Bullock. Rings of SLy(C)-characters and the Kauffman bracket skein module.
Comment. Math. Helv., 72(4):521-542, 1997.

[5] Alessio Carrega. 9 generators of the skein space of the 3-torus. Algebr. Geom. Topol.,
17(6):3449-3460, 2017.

[6] Sabin Cautis, Joel Kamnitzer, and Scott Morrison. Webs and quantum skew Howe
duality. Math. Ann., 360(1-2):351-390, 2014.

[7] Renaud Detcherry, Efstratia Kalfagianni, and Adam S. Sikora. Kauffman bracket
skein modules of small 3-manifolds. Adv. Math., 467:110169, 2025.

[8] Renaud Detcherry and Maxime Wolff. A basis for the Kauffman skein module of the
product of a surface and a circle. Algebr. Geom. Topol., 21(6):2959-2993, 2021.

[9] Charles Frohman and Razvan Gelca. Skein modules and the noncommutative torus.
Trans. Amer. Math. Soc., 352(10):4877-4888, 2000.

[10] Patrick M. Gilmer. On the Kauffman bracket skein module of the 3-torus. Indiana
Univ. Math. J., 67(3):993-998, 2018.

[11] Patrick M. Gilmer and John M. Harris. On the Kauffman bracket skein module of
the quaternionic manifold. J. Knot Theory Ramifications, 16(01):103-125, 2007.

[12] Patrick M. Gilmer and Gregor Masbaum. On the skein module of the product of a
surface and a circle. Proc. Amer. Math. Soc., 147(9):4091-4106, 2019.

[13] Sam Gunningham, David Jordan, and Pavel Safronov. The finiteness conjecture for
skein modules. Invent. Math., 232(1):301-363, 2023.

[14] Sam Gunningham, David Jordan, and Monica Vazirani. Quantum character theory,
2023. arXiv:2309.03117 [math.RT]

[15] Sam Gunningham, David Jordan, and Monica Vazirani. Skeins on tori, 2024.
arXiv:2409.05613 [math.QA]

[16] Allen Hatcher. Notes on Basic 3-Manifold Topology. 2023.

[17] Jim Hoste and Jozef H. Przytycki. The (2, 00)-skein module of lens spaces: a gen-
eralization of the Jones polynomial. J. Knot Theory Ramifications, 02(03):321-333,
1993.

10



[18] Jim Hoste and Jézef H. Przytycki. The Kauffman bracket skein module of S' x S2.
Math. Z., 220(1):65-73, 1995.

[19] David Jordan. Langlands duality for skein modules of 3-manifolds. In String-Math
2022, volume 107 of Proc. Sympos. Pure Math. Amer. Math. Soc., 2023.

[20] Oleg Karpenkov. Continued fractions and SL(2,7Z) conjugacy classes. Elements of
Gauss’s reduction theory. Markov spectrum. In Geometry of Continued Fractions,
volume 26 of Algorithms Comput. Math., pages 67-85. Springer, 2013.

[21] Louis H. Kauffman. State models and the Jones polynomial. Topology, 26(3):395-407,
1987.

[22] Patrick Kinnear. Skein module dimensions of mapping tori of the 2-torus. Quantum
Topol., 2025.

23] Edwin Kitaeff. The Gilmer-Masbaum map is not injective on the Kauffman bracket
skein module, 2024. arXiv:2410.23153 [math.GT]

[24] Greg Kuperberg. Spiders for rank 2 Lie algebras. Comm.Math. Phys., 180(1):109-151,
1996.

[25] Abel Lacabanne, Daniel Tubbenhauer, and Pedro Vaz. Annular webs and Levi sub-
algebras. J. Comb. Algebra, 7(3):283-326, 2023.

[26] Genta Latifi and Daniel Tubbenhauer. Minimal presentations of gln-web categories,
2021. arXiv:2112.12688 [math.QA]

[27] Maciej Mroczkowski. Kauffman bracket skein module of a family of prism manifolds.
J. Knot Theory Ramifications, 20(01):159-170, 2011.

28] Greg Muller. Skein and cluster algebras of marked surfaces. Quantum Topol.,
7(3):435-503, 2016.

[29] Hitoshi Murakami, Tomotada Ohtsuki, and Shuji Yamada. HOMFLY polynomial via
an invariant of colored plane graphs. Enseign. Math., 44:325-360, 1998.

[30] Anup Poudel. A comparison between SL,, spider categories. Canad. J. Math., pages
1-30, 2025.

[31] Jozef H. Przytycki. Skein modules of 3-manifolds. Bull. Pol. Acad. Sci. Math., 39(1-
2):91-100, 1991.

[32] Jozef H. Przytycki. A g-analogue of the first homology group of a 3-manifold. In
Perspectives on quantization (South Hadley, MA, 1996), volume 214 of Contemp.
Math., pages 135-144. Amer. Math. Soc., 1998.

[33] Jozef H. Przytycki and Adam S. Sikora. On skein algebras and Sly(C)-character
varieties. Topology, 39(1):115-148, 2000.

[34] Nicolai Y. Reshetikhin and Vladimir G. Turaev. Ribbon graphs and their invaraints
derived from quantum groups. Comm. Math. Phys., 127(1):1-26, 1990.

11



[35] Yuri Borisovich Rumer, Edward Teller, and Hermann Weyl. Eine fiir die Valenzthe-
orie geeignete Basis der binaren Vektorinvarianten. Nachr. Ges. Wiss. Géttingen,
Math.-Phys. Kl., 1932:499-504, 1932.

[36] Adam S. Sikora. Skein theory for SU(n)-quantum invariants. Algebr. Geom. Topol.,
5(3):865-897, 2005.

[37] Vladimir G. Turaev. Conway and Kauffman modules of a solid torus. J. Sov. Math.,
52(1):2799-2805, 1990.

Universitat Hamburg
Bundesstrafle 55
20146 Hamburg
GERMANY

E-mail address: patrick.kinnear@uni-hamburg.de

12



