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1 Introduction

In this paper, we give an overview of our papers [9, 10]. We assume that surfaces,
embeddings and isotopies are smooth. Let D? be a 2-disk and let I = [0,1]. Let Q,
be a set of m interior points of D?. Let p : D* x I — I be the natural projection. A braid
of degree n or an n-braid is a 1-manifold b embedded in D? x I such that the restriction
map ply : b — I is a covering map of degree n and 9b = bNI(D? x I) = Q,, x OI. A
braided surface or a surface braid is a notion which is given as a 2-dimensional analogous
of a braid. Let D? x B? be a bidisk. Let p : D? x B?> — B? be the natural projection. A
braided surface of degree n is an oriented surface S properly embedded in D? x B? such
that the restriction map p|s : S — B? is a branched covering map of degree n and dS
is a closed braid in D? x 9B2. A braided surface S is simple if the associated branched
covering map plg : S — B? is simple, that is, the number of the elements of p~*(y) is n
or n — 1 for each y € B2. A braided surface S is called a surface braid if 9S is a trivial
closed braid in D? x 0B%. A simple braided surface has a graphical description called a
chart description. A chart of degree n is a certain finite graph in B? with three types of
vertices, each of whose edge is oriented and equipped with a label in {1,2,...,n—1}. We
give [2, 3, 4, 5, 6, 7] for references.

In this paper, we extend the notion of a simple braided surface to a “knitted surface”.
From a braid b, we obtain a tangle called a “knit” by splicing some crossings of b. A
knitted surface is given as a 2-dimensional analogous of a knit, and it is constructed as
the trace of deformations of knits. We extend the notion of a chart of a simple braided
surface to a chart of a knitted surface. Further, we investigate knitted surfaces of degree
2, using charts of degree 2.

The paper is organized as follows. In Section 2, we review knits and knitted surfaces.
In Section 3, we review chart description of knitted surfaces. In Section 4, we observe
knitted surfaces of degree 2.

2 Knits and knitted surfaces

2.1 Knits and the Knit monoid D,

Let n be a positive integer. A knit of degree n [1, 8] is a tangle obtained from a braid
of degree n in D? x I by splicing some crossings. A knit is constructed as a product



of standard generators o; and their inverses o; ' of the braid group B, of degree n, and
“hook pairs” 7; which are obtained from o' (i = 1,...,n—1). We consider that “hooks”
exist only as hook pairs, always keeping the information of the pairs, and we describe the
information of each hook pair by a segment called a “pairing” [9]. We give an equivalence
relation to the set of n-knits so that two n-knits are equivalent if they are related by an
isotopy of n-knits.

The knit monoid of degree n, denoted by D,,, is the set of equivalence classes of n-knits.
Let e be the trivial braid. The unit element of D, is represented by e. The n-knit monoid

D,, has the monoid presentation
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Figure 1: Generators o, o; ! and 7; of the monoid D,, of n-knits.

2.2 Knitted surfaces

A knitted surface is a surface with no closed components, properly embedded in D? x B2,
given as an analogous to a knit in D? x I. A knitted surface S is given by using the
notion of a “pairing” [10], which is an orientable surface embedded in D? x B? describing
pairings of fold singular points of S. A knitted surface of degree n is constructed as the
trace of deformations of knits, as follows. Let 5y — 81 — (2 — --- 5, be a sequence
of knits of degree n presented by a knit monoid presentation consisting of o;,¢; " and 7;
(¢ =1....,n — 1) such that each sequence /3;,_; — f3; satisfies one of the following.
(Case 1) B;_1 and f; is related by an isotopy of n-knits.
(Case 2) B;—1 and f; are related by a transformation of subwords e <+ o or e <+ 7;. We
define B;_1 — B; to be the transformation such that j3; is obtained from §;_; by band
surgery along a band.
(Case 3) f;—1 and ; are related by a transformation of subwords 7; <> 7;7;. We define
Bj—1 — B; to be the transformation such that the part 7;7; is obtained from 7; by adding
a disk D whose boundary is the simple closed curve in 7;7; and then deleting Int(D).

A knitted surface S of degree n is constructed by taking the trace of such a sequence
Bo — B1 = B2 = -+ B, that is, when we denote by §° (¢ € [0, 1]) the isotopy of knits (with
attached bands/disks) associated with Sy — 81 = fo = -+ B, S = Usepa) (8" % {t}).
See [9, Sections 3,4] for more precise explanation.



Theorem 2.1 [9, Theorem 6.1] Every compact surface with no closed components smoothly
properly embedded in D* x B? is smoothly isotopic to some knitted surface.

This theorem extends the result of Rudolph [11] that every orientable ribbon surface
is smoothly isotopic to a braided surface. A surface-link is a closed surface smoothly
embedded in R%. A knitted surface S in D? x B? is called a 2-dimensional knit if 0S =
SN (D? x OB?) is the closure of a trivial braid. In particular, when a 2-dimensional knit is
a simple braided surface, it is called a 2-dimensional braid. For a 2-dimensional knit S of
degree n in D? x B?, we embedAD2 x B? in R* and paste n disks trivially to the boundary
of S to obtain a surface-link S in R*. We call S the closure of a knitted surface S. It is
known [5] that every oriented surface-link in R? is ambient isotopic to the closure of some
2-dimensional braid.

Theorem 2.2 [10, Theorem 1.1] Every surface-link in R* is ambient isotopic to the clo-
sure of some 2-dimensional knit.

3 Chart description of knitted surfaces

A BMW chart or simply a chart of degree n of a knitted surface is a finite graph in B>
such that (1) each edge is either oriented or unoriented, and (2) each edge is equipped
with a label in {1,2,...,n — 1}, and (3) each vertex is one of those given in Figure 2; see
[9, Definition 4.5]. When a BMW chart has no unoriented edges, then it is a chart for a
simple braided surface. A BMW chart I' in B? has a surface S(I') in D? x B? described
by transformations of knits. An interior point of an oriented edge of I' with the label 4
corresponds to the crossing of a letter o; or ;' of a knit describing S(T'), and an interior
point of an unoriented edge of I' with the label i corresponds to a hook pair 7; of a knit

describing S(I").

Theorem 3.1 [9, Theorem 4.8] A knitted surface has a BMW chart description. More
precisely, for a knitted surface S, there exists a BMW chart T' such that S and S(T") are
equivalent.

Surfaces with no closed components properly embedded in D? x B? can be investigated
through BMW charts. We define chart moves or C-moves consisting of T, CI, CII, CIII-
moves, which are local modifications for charts [9, Definition 7.1]. Further, we give a set
of explicit CI-moves [9, Definition 7.3].

Theorem 3.2 [9, Theorem 7.5] Two knitted surfaces of degree n are equivalent if their
presenting charts are related by a finite number of C-moves consisting of T, CII, CIII-
moves and Cl-moves of type (A1)-(F'3).

4 Knitted surfaces of degree 2

In this section, we consider knitted surfaces of degree 2.
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Figure 2: Vertices of a BMW chart.

4.1 Main results

For a knitted surface S of degree 2n satisfying certain boundary conditions, we consider
another type of the closure of S, called the “plat closure” of S, which is a surface-link
obtained from S by pasting several surfaces. For the case of degree 2 such that 9S is the
closure of o7, the plat closure of S is obtained by pasting an annulus or a Mobius band
B with m twist such that 0B = 05S.

A standard 2-sphere (respectively a standard torus) in R* is the boundary of a 3-ball
(respectively an unknotted solid torus) in R® x {0}, and a standard positive (respectively
negative) projective plane is the surface given in Figure 41 (1) (respectively (2)) in [9].
These surfaces are called standard surfaces. A surface-knot in R* is called trivial if it is a
connected sum of a finite number of standard surfaces in R*, and a surface-link is trivial
if it is a split union of a finite number of trivial surface-knots.

Theorem 4.1 [10, Theorem 1.2] The plat closure of any knitted surface of degree 2 is a
trivial surface-link, and any trivial surface-link is ambient isotopic to the plat closure of
a knitted surface of degree 2.

As a corollary of Theorem 4.1, we have the following.

Corollary 4.2 [10, Corollary 1.3] The closure of any 2-dimensional knit degree 2 is a
trivial surface-link, and any trivial surface-link is ambient isotopic to the closure of some
2-dimensional knit of degree 2.

4.2 Key Theorem

For a BMW chart, we call an oriented (respectively unoriented) edge a o-edge (respectively
a T-edge. A o-/7T-edge of a chart is called a free o-/T-edge if its endpoints are vertices of



degree one. A g-edge of a chart is called a half o-edge if its endpoints consists of a vertex
of degree one and either a boundary point or a trivalent vertex connected with a pair of
7-edges. When a half o-edge has an orientation toward (respectively from) the vertex of
degree 2, we call it positive (respectively negative). We denote by T a standard torus, and
by P, (respectively P_) a standard positive (respectively negative) projective plane.

Theorem 4.3 [9, Theorem 8.1] Let F' be a trivial surface-knot, which is a connected sum
of g copies of T and m copies of P, and n copies of P_. Then F 1is the plat closure of
the knitted surface presented by a 2-chart T' such that T' consists of min{m,n} copies of
free o-edges, g copies of free T-edges, and |m —n| copies of positive (respectively negative)
half o-edges if m > n (respectively m < n).

The second part of Theorem 4.1 is a corollary of Theorem 4.3. The first part of
Theorem 4.1 is shown by considering the “normal form” of knitted surface of degree 2,
which is given using charts of degree 2 [10].
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