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1 Introduction

Satoh and Taniguchi [6] introduced a virtual knot invariant J,, called the n-writhe, for
any non-zero integer n. The n-writhes give the coefficients of several polynomial invariants
for virtual knots. They gave a necessary and sufficient condition for a sequence of integers
to be that of the n-writhes of a virtual knot as follows.

Theorem 1 ([6]). The sequence of n-writhes {J,(K)}nzo of a virtual knot K satisfies
> nzoIn(K) = 0. Conversely, for any sequence of integers {ry}nzo with 3, _onr, =0,
there ezists a virtual knot K such that J,(K) = r, for any n # 0.

It is well known that local moves in Fig. 1 are unknotting operations for classical knots
or virtual knots. The crossing change and the Delta-move are unknotting operations for
classical knots, and the virtualization and the forbidden moves are unknotting operations
for virtual knots. The unknotting number by the virtualization is called the virtual
unknotting number and is denoted by u”. The details of local moves and unknotting
numbers are elaborated in Section 2.
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Figure 1: Local moves.

There are some studies on unknotting operations and n-writhes, where the changes
of the values of n-writhes by some unknotting operations are calculated. For a crossing
change and a Delta move see [6], and for forbidden moves see [5]. In our previous papers
(see [2] and [3]), the following results were obtained regarding the virtualization.



Theorem 2 ([2]). For any given non-zero integer n and any given integer m, there ezists
a virtual knot K such that u’(K) =1 and J,(K) =m.

Theorem 3 ([3]). Let {rn}nzo be a sequence of integers. If 3., onr, = 0, then there
exists a virtual knot K such that

u'(K)=1and J,(K) =1,
for any n # 0.
In this paper, we obtain a more effective result.

Theorem 4. Let {r,}n.0 be a sequence of integers. If Zn#) nr, = 0, then there exist
infinitely many virtual knots K, (m € N) such that

u'(Kp) =1 and J,(K,,) =1y
for any n # 0.

In Section 2, we review the basic notions of virtual knots and definitions of some virtual
knot invariants. In Section 3, we explain the outline of the proof of Theorem 4.

2 Preliminaries

2.1 Virtual knots and local moves

A wvirtual knot diagram is a generalization of a knot diagram and it has virtual crossings
as well as real crossings in Fig. 2. We say that two virtual knot diagrams are equivalent
if one can be obtained from the other by a finite sequence of generalized Reidemeister
moves in Fig. 3 [1]. A wvirtual knot is an equivalence class of virtual knot diagrams under
the generalized Reidemeister moves.
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Figure 2: Crossing types.

Let K be a virtual knot and D a virtual knot diagram of K. Then, D is regarded
as the image f(S!) of a generic immersion f : S' — R%. A Gauss diagram of D is the
preimage of D with chords, each of which connects the preimages of each real crossing.
We specify over/under information of each real crossing on the corresponding chord by
directing the chord toward the under path and assign each chord with the sign of the
crossing in Fig. 4. In what follows, we suppose that virtual knot diagrams are oriented.

It is well-known that there exists a bijection from the set of virtual knots to the set of
equivalence classes of their Gauss diagrams modulo the generalized Reidemeister mowves
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Figure 3: Generalized Reidemeister moves.

Figure 4: The signs of real crossings.
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Figure 5: Generalized Reidemeister moves of Gauss diagrams.



of Gauss diagrams as shown in Fig. 5. We identify a virtual knot with an equivalence
class of Gauss diagrams.

A local modification on a virtual knot diagram is called a local move. Generalized
Reidemeister moves are local moves. Let us fix a local move. If any virtual knot diagram
is transformed into a trivial knot diagram by a finite sequence of the local moves and
generalized Reidemeister moves, then the local move is called an unknotting operation of
virtual knots. The local move on virtual knot diagrams in Fig. 6 is called a virtualization.
It is obvious that a virtualization is an unknotting operation.

\—>
N

Figure 6: Virtualization.

For an unknotting operation, the minimum number of the operations needed to trans-
form a diagram of a virtual knot K into a trivial knot diagram is called the unknotting
number of K by the unknotting operation. When we operate the local move, we are al-
lowed to do generalized Reidemeister moves before or after the operation. The unknotting
number of a virtual knot K by the virtualization is called the wvirtual unknotting number
and denoted by u’(K). We identify a virtual knot K and the Gauss diagram G associ-
ated with K. When we consider the Gauss diagram, we use the notation u’(G) instead
of u’(K), that is, u”(G) means u”(K) where K is a virtual knot whose Gauss diagram is

G.

2.2 Invariants for virtual knots
We review the definition of n-writhes and their properties

Definition 5 ([6]). Let K be a virtual knot with a Gauss diagram G consisting of an
oriented circle S' together with signed, oriented m chords connecting 2m points on S*.
Let ¢ = @ be the chord in G with the sign € where ¢ is oriented from P to Q). We
assign the signs —e and € to the endpoints P and @, respectively. For a chord ¢ = P
in a Gauss diagram G, the specified arc v of ¢ is the arc in St with endpoints P and Q)
oriented from P to Q) along the orientation of S' as shown in Fig. 7. The index of c is
the sum of the signs of all the points on 7y except P and Q). We denote it by i(c). For an
integer n, the n-writhe of G is

i(c)=n

The integer J,(G) defines an invariant of K forn # 0. It is called the n-writhe of K and
is denoted by J,,(K).

And it holds Theorem 1 in Section 1.
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Figure 7: The specified arc in the circle of a Gauss diagram.

We review the definition of the first intersection polynomial. The endpoints of a chord
of a Gauss diagram G divide the circle S' into two arcs. Let @ C S! be the arc from
the tail of the chord to the head of it along the orientation of S! and P(«) the set of
endpoints of the chords of G in the interior of . For an endpoint p € P(«), we denote
by €(p) the sign of p, and by 7(p) the other endpoint of the chord incident to p. Let @ be
the complementary arc of o« C S, and o and 3 C S' arcs for distinct chords a and b of
G, respectively. A numerical value S(c«, 3) is defined by

S.B)= Y. elp)
pEP(a),7(p)EP(B)

We say that the chords a and b of G are linked if their endpoints appear on S! alternately,

and otherwise unlinked. Then the intersection number -5 of the arcs o and f is calculated
as below.

1. If @ and b are unlinked, then o - § = S(«, 5) and

2. if they are linked for £,6 € £ as shown in Fig. 8, then it holds that o~ 8 = S(«a, B) +
s(e+0)and 8- =S(8,a) - 5(e+9).

Figure 8: Linked chords a and b.



Definition 6. [4] Let D be a diagram of a virtual knot K with m crossings ¢; for 1 <
1 < m, G the Gauss diagram of D, ~y; the arc oriented from the tail of ¢; to its head
along the orientation of S', and 7; the other arc associated with ¢;. The following Laurent
polynomials Wp(t), for(D) and Ip(t) are defined by

Wp(t) = Z (7= 1),
Jor (D Zs g;("7 — 1) and

Ip(t) = f01( ) —wpWhp(t),

where ¢; is the sign of ¢; and wp = Y .-, &; is the writhe of D. The polynomial Ip(t) is
an invariant of K which is called the first intersection polynomial and denoted by Ik (t).
The n-th coefficient of Wp(t) is equal to the value of J,(D) and ~y;-7; is equal to the value
of the index i(c;).

Notation 7. Let Gy and Gy be Gauss diagrams having two chords ¢y and cf, respectively. If
co and ¢, have the same sign and i(co) = i(c}) = 0, then the vertex connected sum G14G5
with respect to ¢y and ¢, is the Gauss diagram obtained by removing the interiors of reqular
neighborhoods of the head of co and the tail of ¢ from the diagrams and connecting them
as shown in Fig. 9.
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Figure 9: The vertex connected sum GiG’.

3 Outline of the proof of Theorem 4.

We prepare a notation and some lemmas for the outline of the proof of Theorem 4.

Notation 8. Let G be a Gauss diagram with the chords ¢; for 0 <1 <'s, and ~y; the arc
associated with the chord c;. We define the sets of the numbers My, for k, ¢ = 0,1 on the
Gauss diagram G as follows:

Mi1(G) = {i | v has both the head of co and the tail of it} ,

Myo(G) = {i | v has the head of ¢y but doesn’t have the tail of it} and
Mo (G) = {i | v doesn’t have the head of co but has the tail of it} ,

Moo (G) = {i | 7 has neither the head of cy nor the tail of it} .



Lemma 9. Let L be a virtual knot with the Gauss diagram H as shown in Fig. 10. Let
K be a virtual knot and G be a Gauss diagram of K with the chords ¢, for 0 <i <s. The
chords ¢ has the sign €. Let y; be the arc of G associated with c,. Then, for the virtual
knot LK with the vertex connected sum HYG with respect to the chords ¢y and ¢y, we
obtain

Ingic(t) = I(t) + Ik (1) B
= (L [ § IR N (A S My

i€eM11(G) i€M10(G)
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Figure 10: The Gauss diagram H.

Lemma 10. Let M be a virtual knot with the Gauss diagram I as shown in Fig. 11. Let
K be a virtual knot and G a Gauss diagram of K with the chords d; for 0 < i <'s. The
chord d; has the sign 6;. Let (; be the arc of G associated with d; Then, for the virtual
knot K§M with the vertex connected sum Gl with respect to the chords dy and dj,, we
obtain

Trepna (t) = Iic(t) + I (t)
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Lemma 11. Let K be a virtual knot and G a Gauss diagram of K with the chords d; for
0 <1 <s. The chord d; has the sign 6;. Let (; be the arc of G associated with d;. Then
for a natural number m, we obtain

Iy wpakyMy. g = Ix@) +m Y 6 1)@ —1)

—_—— —_—— i€eM11(G)
+m Y GG - -t
1€Moo (G)
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Figure 11: The Gauss diagram 1.

Here, we explain the outline of the proof of Theorem 4. the virtual knot K is the
virtual knot with the Gauss diagram G which we constructed in [3]. Let G,, be the Gauss
diagram obtained from the Gauss diagrams H, G and I by the vertex connected sum with
respected to their horizontal chords as shown in Fig. 12.
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Figure 12: A Gauss diagram G,,

Let IC,, be the virtual knot with the Gauss diagram G,,. We see that it holds that
u’(K,,) =1 and J,(K,,) = r, from the construction. From Lemma 11, we have

I, (t) = I (t)

-2 -2 B u
DY > = (T =) mt =)D Y (7= 1)
u=A v=u u=2 v=2

= Iic(t) + m(=r)t* + -+ m(—rp)t5,

where A be the minimum degree of Wy, (¢) and B the maximum degree of it. It holds
that I, (t) # Ik, (t) for m # s. Therefore IC,,, = g for m # s. This completes the proof
of Theorem 4.
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