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Abstract

A classic result by Benardete, Gutierrez and Nitecki shows that if the action of a braid « on
the curve complex sends a standard curve into another standard curve, then the standardness is
also preserved after applying each factor of the normal form of a. This survey aims to explain how
generalize this result into the frame of Artin groups following a result of Digne and Michel.

1 Introduction

The braid group on n strands, originally introduced by Artin in the early 20th century, can
be interpreted from multiple perspectives. Topologically, it coincides with the mapping
class group of the n-punctured disk—homeomorphisms fixing the boundary, up to isotopy.
From an algebraic viewpoint, it belongs to the class of Artin groups, with the standard
presentation:

0,05 = 0405 if "L—]’>1
o0j0, = 0jo,0; ifli—jl=1 /"

In recent decades, significant progress in understanding braid groups has emerged from
the interplay between combinatorial algebra and geometric topology. On one side, Garside
theory provides algebraic frameworks for studying normal forms and decision problems.
On the other hand, the topological perspective—via the action of the braid group on the
curve complex of the punctured disk—has offered deep geometric insights.

The curve complex associated to a surface is a simplicial complex whose vertices cor-
respond to isotopy classes of essential simple closed curves, with higher-dimensional sim-
plices representing collections of such curves that can be realized disjointly. The mapping
class group of the surface acts naturally on this complex by sending curves to their images
under homeomorphisms. This action underlies the Nielsen—Thurston classification, which
classifies elements of the mapping class group into three types. In particular, an element g
of a braid group is called:

e periodic: some power of g is central;
e reducible: some power of g preserves a nontrivial multicurve;

e pseudo-Anosov: if neither of the above conditions holds. In this case, there exist
a pair of transverse measured foliations on the surface that are invariant under the
action of g, scaled respectively by a factor A > 1 and 1/\ each time g acts.



In a foundational result from the 1980s, Birman, Lubotzky, and McCarthy [3] showed
that every reducible braid g —and in general every reducible mapping class— admits a
canonical system of invariant curves. This collection partitions the surface into subsur-
faces, each of which is preserved by some power of g, and on which the induced action
is either periodic or pseudo-Anosov. This decomposition provides a deep insight into the
internal structure of reducible mapping classes.

The algebraic generalization of braid groups are Artin groups. An Artin group is
defined by a generating set S and a symmetric matrix (ms4)sses, with relations of the
form:

Ag=(S|sts---=tst---, mgy < 00).
Ms,t Ms,t

The braid group B, is the special case where the associated Coxeter group, obtained by
adding s?> = 1 for each generator, is the symmetric group, which is finite. Any Artin
group associated to a finite Coxeter group is said to have spherical type, and all of them
admit a Garside structure. The main question that motivates this survey is the following:

Main question. How topological properties of the braid group generalize to spherical-
type Artin groups?

In the case of braid groups, vertices of the curve complex correspond to a specific
family of subgroups: the irreducible parabolic subgroups. A standard parabolic subgroup
Ax C Ag is generated by a subset X C S; in braid groups, when X consists of consecutive
generators, this subgroup corresponds to a multicurve encircling the associated punctures.
Van der Lek proved in his thesis [14] that every standard parabolic subgroup is an Artin
group with the same relations present in the bigger Artin groups where the generators
of X are involved. We say that an Artin group (or a standard parabolic subgroup)
is irreducible if it cannot decompose as a direct product Artin groups. More generally,
parabolic subgroups are conjugates of standard ones. If & € B,,, then oA xa ™! corresponds
to the image of the original curve under the mapping class represented by a.. An irreducible
parabolic subgroup is the conjugate of an irreducible standard parabolic subgroup. In
braids, it corresponds to a single curve.

Motivated by this analogy, one can define a flag simplicial complex for general Artin
groups, mimicking the curve complex. In this complex, the vertices are irreducible
parabolic subgroups and two irreducible parabolic subgroups P and () span an edge if one
is contained in the other, or if their intersection is trivial and pg = gp for all (p, q) € Px Q.
In spherical-type Artin groups, the Garside structure allows an efficient criterion: it suf-
fices to check whether the central elements of two such subgroups commute [5].

The following analogy that one would like to find is if we can classify elements on
an Artin group in the same manner we do with braids and use this classification in an
effective way. We could naturally stablish the following classification:

An element g of an Artin group can be

e Periodic, if a power of g is central;

e Reducible, if a power of g preserves a non-trivial family of parabolic subgroups
under conjugacy;



e Pseudo-Anosov, if no power of the braid preserves any parabolic subgroup under
conjugacy.

However, if one wants to find an analogue of the canonical reduction system in this
setting, there are many non-trivial questions that need to be addressed. For example, what
does it mean to decompose a subgroup along a set of disjoint parabolic subgroups? To
get a sense of the topological questions that require a Garside-theoretical generalization,
we present in [6] an algorithm to compute the canonical reduction system of a braid
using Garside theory. One of the results we use in constructing the algorithm is a classic
theorem by Benardete, Gutierrez, and Nitecki [2]. To understand this result, one must
first understand how the Garside structure works for braids and how it leads to the
construction of a normal form.

Let A be a spherical-type Artin group with standard generating set S. To study its
structure, we focus on several key elements and properties:

e The positive monoid A", consisting of the elements of A that can be expressed as
products of generators in S without using inverses.

e A prefix partial order =<, defined by: a < b if there exists ¢ € AT such that b = ac.
In this case, a is said to be a prefix of b. This order is left-invariant and admits both
least common multiples a V b and greatest common divisors a A b for any a,b € A.

e The Garside element A, which is defined as the least common multiple of the gener-
ators: A =\/,_gs. It satisfies the conjugation property AATA™! = At

e The simple elements, which are defined as the prefixes of A. These elements not only
play a central role in the group’s structure, but they also generate the entire group.

e The group A is atomic, meaning that the length of a positive element (when written
as a product of atoms, i.e., generators) is bounded above — and this bound is in fact
uniform for all such expressions.

In parallel, one can define the suffix order > by declaring a > b if a = ¢b for some ¢ €
AT, In this case, b is a suffix of a. This order also admits unique least common multiples
and greatest common divisors, and under it, A remains the least common multiple of the
atoms. Unless otherwise stated, we will work with the prefix order.

These notions allow us to express any element z € A in a canonical form. In the prefix
setting, we have the left normal form:

x=APx---x,,

where each x; # A is a simple element and satisfies the condition x;z;.1 A A = x;. This
solution to the word problem for braids is attributed to separate works of Garside, Adyan
and Elrifai and Morton [1,8,9], while the generalization of these combinatorial properties
to spherical-type Artin group is due to Brieskorn and Saito [4].

Given a braid a and a curve C' in D,,, we denote by C* the result of the action of «
on C. Embed D,, in the complex plane in such a way that the punctures of the disc lie



on the real axis. We say that a curve in D,, is standard if it only intersects the real axis
in two points. This is the same as saying that it correspond to a standard (irreducible)
parabolic subgroup.

Theorem 1 ( [2, Theorem 5.7] and [12, Theorem 3.8]). Let C' be a standard curve and

let o = AFzy -+ -z, be a braid in left normal form. If C* is standard, then CA"=vi  for
ie{l,...,r} is standard.

Figure 1: An example of Theorem 1. The dashed lines separate the factors of the braid normal form.

For the algorithm presented in [6], this theorem plays a crucial role. The main idea
is as follows: given a reducible braid «, we aim to find a conjugate § that admits a
standard canonical reduction system. To do this, we consider specific conjugates that
preserve standard systems of curves and identify which of them has a standard canonical
reduction system.

At times, we need to manipulate braids by altering their normal forms. A classical
operation on braids is known as cycling [8]. If a braid « is written in left normal form as
a = AFg, .- 2y, then its cycling, denoted c(«), is the braid:

C(Oé) = Akl’g s l’N(Akl’lA_k).
In essence, we cyclically permute the simple factors of the normal form, conjugating
appropriately by powers of A.

What we want is the following: if a braid preserves a standard curve, then its cycling
should also preserve a standard curve. This is captured in the following corollary:



xlA_k

Corollary 2. Let a be a braid. If C is a standard curve preserved by «, then cat
is a standard curve preserved by c(a).

Proof. Let « = Az - - 2y be the left normal form of a. By Theorem 1, the fact that C
is standard implies that
Oy = 08

is also a standard curve. Therefore, z1 sends C2* to Ci, and so the conjugating element
used in the cycling operation, A*z;A=* sends C' to (Cl)A_k, which remains a standard
curve.

Finally, observe that

(CAkxlA_k>c(a) _ (CAkxlA_k)(Akxl—lA—k)a(AkxlA—k) _ Ca(Ak’mlA—k’) _ CAkxlA—k’.

This proves that C2"#127" is preserved by c(a). O

Since the algorithm in [6] was designed to identify which topological properties in
the construction of a canonical reduction system can be translated into algebraic ones
using Garside theory, the aim of this survey is to take a step further by explaining how
Theorem 1 generalizes to spherical-type Artin groups.

2 Elements sending standard parabolic subgroups to standard
parabolic subgroup

The main result of this survey is an immediate corollary of an unpublished result by
Digne and Michel [7]. Their result was further generalized to Garside groups by Eddy
Godelle [11]. A braid that sends a standard curve C; to a standard curve Cy always
contains a tube connecting these two curves. The portion of the braid that lies inside this
tube is a braid on fewer strands—specifically, the number of punctures enclosed by the
standard curve. More formally, the braid can be expressed as 3 = 3;8., where [3; consists
only of generators moving the punctures enclosed by C, and S, is such that the braid
inside the tube connecting C and Cj is trivial (see Figure 2). We refer to 3., both in this
context and more generally in the setting of Artin groups, as a ribbon.

Given an Artin group of spherical type Ag, a subset X C S, and an element ¢t € S\ X,
we define

rxt = A)_(IAXU{t}-

For any X and ¢, both rx; and its inverse T;(}t are called elementary ribbons. Note that

conjugation by rx, always sends the subset X to a subset Y C X U {t}. Thus, we say
that rx: is an elementary X-ribbon-Y , and similarly r;(’lt is an elementary Y-ribbon-X.
More generally, we say that an element is an X -ribbon-Y if it can be written as a product
r1--Tm, Where each r; is an elementary X;_;-ribbon-X; with Xy = X and X,, = Y.
Thanks to results of Paris and Godelle [10,13], we know that any element that conjugates
a standard parabolic subgroup Ax into a standard parabolic subgroupAy can be written
as the product of an element of Ax and an X-ribbon-Y. We denote the set of all such
elements by Conj(X,Y).



Figure 2: How a braid sending a standard curve to a standard curve decomposes as a braid where the
crossings only take place inside the first curve and a ribbon.

Theorem 3. Let Ag be an Artin group of spherical type and let Ax be a standard parabolic
subgroup. Assume that g € Ag with normal form g = APz, ---x, is such that g*Axg is
a standard parabolic subgroup. Then each

(APzy -- -xi)_lAX(Apxl ceexy),

forie {1,...,r} is a standard parabolic subgroup Ax, and each x; € Conj(X;_1, X;) and
it 18 positive, where Xg = X.

Proof. Since the conjugation by AP always sends a standard parabolic subgroup to a
standard parabolic subgroup, we can suppose without loss of generality that p = 0, so g
is positive. We also know that ¢ lives in Conj(X,Y’). In [7, Proposition 6.6] Digne and
Michel proved that the factors «),--- , 2/, in the normal form of a positive X-ribbon-Y
are positive such that every z} is a X;_;-ribbon-X; where Xy = X, as described in the
statement of the theorem. Since g is the product of an element in g and a X-ribbon-Y,
we have that x; = g;a}, where g; € (2} - 2i_)'Ax(2} - - 2/_)) = Ax, , and 2} =1 for
i > 1'. Thus z; € Conj(X;_1, X;). O

71—

References
[1] S. I. Adyan. Fragments of the word A in a braid group. Math. Notes, 36:505-510,
1984.

[2] Diego Bernardete, Zbigniew Nitecki, and Mauricio Gutierrez. Braids and the Nielsen-
Thurston classification. J. Knot Theory Ramifications, 4(4):549-618, 1995.

[3] Joan S. Birman, Alex Lubotzky, and John McCarthy. Abelian and solvable subgroups
of the mapping class groups. Duke Math. J., 50(4):1107-1120, 1983.



[4] Egbert Brieskorn and Kyoji Saito. Artin-Gruppen und Coxeter-Gruppen. Invent.
Math., 17(4):245-271, 1972.

[5] Marfa Cumplido, Volker Gebhardt, Juan Gonzilez-Meneses, and Bert Wiest. On
parabolic subgroups of Artin—Tits groups of spherical type. Adv. Math., 352:572—
610, 2019.

[6] Marfa Cumplido, Juan Gonzalez-Meneses, and Davide Perego. Computing Canonical
Reduction Systems for Braids. In preparation, 2025.

[7] Francois Digne and Jean Michel. Garside and locally Garside categories. HAL version:
fthal-00121734v1, 2006.

[8] Elsayed A. Elrifai and Hugh R. Morton. Algorithms for positive braids. Q. J. Math.,
45(4):479-497, 1994.

9] F. A. Garside. The braid group and other groups. Q. J. Math., 20(1):235-254, 1969.
[10] Eddy Godelle. Normalisateur et groupe d’Artin de type sphérique. J. Algebra,
269(1):263-274, 2003.

[11] Eddy Godelle. Parabolic subgroups of Garside groups II: Ribbons. J. Pure Appl.
Algebra, 214(11):2044-2062, November 2010.

[12] Eon-Kyung Lee and Sang-Jin Lee. A Garside-theoretic approach to the reducibility
problem in braid groups. J. Algebra, 320(2):783-820, 2008.

[13] Luis Paris. Parabolic Subgroups of Artin Groups. J. Algebra, 196(2):369-399, 1997.

[14] Harm Van der Lek. The Homotopy Type of Complex Hyperplane Complements. PhD
thesis, Nijmegen, 1983.

Instituto de Matematicas de la Universidad de Sevilla (IMUS) and

Departamento de Algebra
Universidad de Sevilla
Avenida Reina Mercedes s/n 41012, Sevilla, SPAIN

E-mail address: cumplidoQus.es



