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1 Introduction

This note is based on the talk I gave at the conference Intelligence of Low-dimensional
Topology, held at RIMS in May 2025. The talk focused on the structure of the set of
growth rates of finitely generated groups. In particular, I emphasized an infinite family of
groups arising as fundamental groups of hyperbolic manifolds of fixed dimension. Here,
I aim to provide some background and terminology, primarily based on the papers [FS]
and [F].

Let G be a finitely generated group with a finite generating set S. We always assume
that S = S~'. Let B, (G, S) be the set of elements in G whose word lengths are at most n
with respect to the generating set S. Let 5, (G, S) = |B.(G, S)|. The exponential growth
rate of (G, S) is defined to be:

e(G,S) = lim B,(G,S)x.
n— oo
A finitely generated group G has exponential growth if there exists a finite generating
set S such that e(G,S) > 1. The group G has uniform exponential growth if there exists
¢ > 1, such that for every finite generating set S, e(G,S) > c.
Given a finitely generated group G, we define:
e(G) = inf €e(G,9),
|S|<oo
where the infimum is taken over all the finite generating sets S of G. Since there are finitely
generated groups that have exponential growth but do not have uniform exponential
growth [W], the infimum, e(G), is not always realized by a finite generating set for a
finitely generated group G.
Given a finitely generated group G, we further define the following set in R:

§(G) = {e(G, 9)[|S] < oo},

where S runs over all the finite generating sets of G. The set £(G) is always countable.
The focus of the talk is on understanding the structure of this set. It has a striking
resemblance to the structure of the set of volumes of hyperbolic 3-manifolds, which we

mention at the end of this note.
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2 Hyperbolic groups

The notion of hyperbolic groups was introduced by Gromov [G]. It has been a central
concept in geometric group theory.

A non-elementary hyperbolic group contains a non-abelian free group, hence, it has
exponential growth. In fact, a non-elementary hyperbolic group has uniform exponential
growth [K].

Important examples of hyperbolic groups include: free groups of finite rank at least
two, the fundamental groups of closed, orientable surfaces of genus at least two, and the
fundamental groups of closed Riemannian manifolds of negative sectional curvature.

Recently it is proved that £(G) of a non-elementary hyperbolic group G is well-ordered,
hence, in particular, has a minimum, [FS].

Theorem 2.1 (Hyperbolic groups). Let G be a non-elementary hyperbolic group. Then
&(Q) is a well-ordered set. For eachr € £(G), there are only finitely many finite generating
sets S of G with r = e(G, S), upto Aut(G).

This result is new even for free groups and closed surface groups. The argument is
long and intricate. It relies heavily on the hyperbolicity of GG, and also makes essential
use of the deep fact that G is equationally Noetherian, [S], [RW], a notion we will explain
in the next section.

3 Acylindrically hyperbolic groups

The result on hyperbolic groups has been extended in [F]. To explain the results, we need
two definitions, acylindricity of group actions and equational Noetherianity of a group.

3.1 Acylindrical actions

To generalize the properness of a group action, Bowditch [Bo| introduced the following
definition.

Definition 3.1 (acylindrical action). An action by isometries of a group G on a metric
space X is acylindrical if for any € > 0, there exist R = R(e) > 0 and N = N(¢) > 0 such
that for all z,y € X with d(z,y) > R, the set

{9 € Gld(x,g(x)) < e.d(y,g(y)) <€}

contains at most NN elements.

A group G is called an acylindrically hyperbolic group, [O], if it acts on some J-
hyperbolic space X such that the action is acylindrical and non-elementary. Here, we
say the action is elementary if the limit set of G in the Gromov boundary 0X has at
most two points. See [G] for the definitions of §-hyperbolic spaces and their boundaries.
If the action is non-elementary, it is known that G contains hyperbolic isometries on X.
Non-elementary hyperbolic groups and non-virtually-abelian mapping class groups are
examples of acylindrically hyperbolic groups, [Bo]. There are many other examples.



3.2 Equational Noetherianity

Let G be a group and F'(xy,--- ,zy) the free group on X = {xy,--- ,x,}. For an element
s € F(xy,-- ,m) and (g1,-+- ,90) € GY, let s(g1,-+- , g¢) € G denote the element after we
substitute every x; with g; and z; ' by g; ' in 5. Given a subset S C F(xy,--- ,7), define

Va(S) = {(g1,-- ,90) € G*ls(gr, -+, g¢) = 1 for all s € S}.

S is called a system of equations (with X the set of variables), and V(S) is called the
algebraic set over G defined by S. We sometimes suppress G from Vi (.5).

Definition 3.2 (Equationally Noetherian). A group G is equationally Noetherian if for
every ¢ > 1 and every subset S in F(zy,--- ,xy), there exists a finite subset Sy C .S such
that Vg(So) = Vg(S)

Remark 3.3. This definition appears in for example [GrH]. There is another version of
the definition that considers S C G * F'(xy,- -+ ,x,), which is originally in [BMR] and also
in [RW]. They are equivalent, see [RW, Lemma 5.1].

Examples of equationally Noetherian groups include finitely generated free groups,
[Gu]; linear groups, [BMR]; hyperbolic groups without torsion, [S], as well as possibly
with torsion, [RW]; and hyperbolic groups relative to equationally Noetherian subgroups,

|GrH].
3.3 Results

We are ready to state one of the main results from [F].

Theorem 3.4 (Well-orderedness for acylindrical actions). Suppose G acts on a §-hyperbolic
space X acylindrically, and the action is non-elementary. Assume that there exists a con-
stant M such that for any finite generating set S of G, the set SM contains a hyperbolic
element on X. Assume that G is equationally Noetherian. Then, £(G) is a well-ordered
set.

In particular, inf £(G) is realized by some S, ie, e(G) = ¢(G, S).
This results has several applications. We mention one, also from [F].

Theorem 3.5 (Rank-1 lattices). Let G be one of the following groups:
1. A lattice in a simple Lie group of rank-1.

2. The fundamental group of a complete Riemannian manifold M of finite volume such
that there exist a,b > 0 with —b0*> < K < —a® < 0, where K denotes the sectional
curvature.

Then &(G) is well-ordered.

4 Volume of hyperbolic 3-manifolds

It is interesting to compare our results on the set of growth rates with the following
theorem of Thurston (partly due to Jergensen), see [G2].
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Theorem 4.1. Let V' be the set of volumes of complete, hyperbolic 3-dimensional man-
ifolds. Then V is well-ordered. For each v € V, there are only finitely many hyperbolic
3-manifolds whose volume is v.

At present, we do not know of any implications between this result and ours.

5 Questions

We conclude with a few natural questions (see [F] and [F'S] for more).

Question 5.1. Let ¥, be the closed orientable surface of genus g > 2. Let G be its
fundamental group. Find a finite generating set S such that e(G,S) = e(G). Is it a
standard generating set of the surface?

Question 5.2. Find other finitely generated groups G such that £(G) is well-ordered. For
example, is £(SL(3,Z)) well-ordered? It is known that SL(3,Z) has uniform exponential
growth, [EMO].
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