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Abstract

This is a summary of the paper [Tan24] and the presentation in the conference “Intelligence
in Low-dimensional Topology 2025”. We construct a non-commutative geometry analogue
of the modular vector field in Poisson geometry based on a (flat) connection and show that,
in the case of an oriented surface, it coincides with Turaev’s loop operation p with a suitable
choice of the connection.

1. INTRODUCTION

In [Gol86], Goldman defined a symplectic structure on the GL(n)-character variety X of the
fundamental group of a connected, closed and oriented surface ¥ based on previous works by
Atiyah and Bott. In the same paper, he found the topological counterpart of the Lie algebra
structure on the ring O(X) of regular functions on X induced from the symplectic structure,
which is now known as the Goldman Lie algebra, denoted by g(X) in this summary. More
specifically, g(X) is the R-vector space spanned by homotopy classes of free loops on the surface
>, and we have the surjective map

a(%) = O(X)

of Lie algebras. The above construction is extended by Fock and Rosly [FR99] for the case of
non-empty boundary, in which case X only has a Poisson structure. In contrast, the definition of
the Lie bracket, the Goldman bracket, works as is since it is written in terms of the intersection
of loops; hence, it is called a loop operation.

The Goldman Lie algebra g(¥) can be thought of as the non-commutative geometry counter-
part of the symplectic structure on X. For simplicity, we only deal with the case of non-empty
boundary and an approach involving double brackets. First of all, let Rm be the group algebra
of the fundamental group m = 71(3). Then, the vector space g(X) is identified as the trace space

|R7| := HHy(R7) = Rrr/[Rmr, R

of R, where the most-right-hand side is the quotient by the vector space spanned by commuta-
tors and not the abelianisation. In [vdB08], van den Bergh introduced a non-commutative geom-
etry analogue of a (Poisson) bivector: a double bracket II on an associative but not-necessarily-
commutative algebra A is a linear map

II: A A—- AR A



satisfying an appropriate version of the Leibniz rule. More details are covered in the next section.
In the case of R, we can define the double bracket « in terms of the intersection of based loops,
which induces the Goldman bracket mentioned above.

As in the title, the purpose of my paper [Tan24] is to formulate modular vector fields in
non-commutative geometry. With a Poisson manifold P together with a volume form «, we can
associate the vector field m, as the composition

my: C°(P) 22 Der(C™°(P)) Loy ¢oo(p).

Here, Ham is the Hamiltonian flow and div,, is the divergence with respect to . In this summary
of my paper [Tan24], we start with formulating these two maps in the setting of non-commutative
geometry and show, in the case of the surface Rw, that it coincides with another kind of loop
operation p introduced by Turaev.

2. DOUBLE BRACKETS, CONNECTIONS AND THE TRIPLE DIVERGENCE

Let K be a field and A a unital associative K-algebra. The two-fold tensor product A ® A
has two commuting A-bimodule structures: for a,b,z,y € A, the outer structure is given by
a-(x®y) -b=ar® yb,
while the inner structure is given by
ax*(r®y)*b=1xbx ay.
Following [AKKN23], we make the following:
Definition 2.1. A double braket on A is a K-linear map IT: A ® A -+ A ® A satisfying
II(a,bc) = (a,b) - ¢+ b-I(a,c) and
II(ab,c) = (a,c) x b+ a = II(b, c)

for a,b,c € A.

Remark 2.2. Van den Bergh defined double brackets in [vdB08] with the additional condition
of skew-symmetry. Our definition is based on [AKKN23], and the skew-symmetry is not imposed
to deal with the important example below.

Example 2.3. Let X be a connected, oriented and compact surface with non-empty boundary.
Take a base point * on 0%, and let m = 71(X, %) be the fundamental group of 3. Then, there is a
double bracket on the group algebra K, denoted by x below, which is independently introduced
by Massuyeau and Turaev in [MT14] and by Kawazumi and Kuno in [KK15], respectively. It is
given as follows: first, fix an embedded short positive arc v: [0,1] — 9% with v(1) = %, and put
v(0) = e, by which (3, @) is identified with 71 (X, *). For generic loops « based at e, and 3 at
*, respectively, we define

R(a,ﬁ) = Z sign(a, B;p)ﬁ*papol/ 0y V_laquﬁp*,
peQNS

where sign(«, 5; p) € {£1} is the local intersection number with respect to the orientation of ¥,
and [, is the path along 8 from * to p and so on.



Definition 2.4. A double deriavtion on A is a K-linear map 6: A - A ® A satisfying
f(ab) =6(a) -b+a-6(b)
for a,b € A. We denote the set of all double derivations on A by DDer(A).

Given a double bracket II, we have II(a, -) € DDer(A) by the first condition in Definition
2.1. We abusively put
IT1: A— DDer(A): a— I(a, ),

which is an analogue of a Hamiltonian flow.

Next, we move on to the divergence map. As mentioned above, the divergence map is defined
upon the choice of a volume form. More specifically, for a Poisson manifold P together with a
volume form «, the divergence div, (&) of a vector field £ on P is the smooth function uniquely
specified by

dive(§)a = Le(a) in QP(P),

where L is the Lie derivative by £. Recall that Q'P(P) is the exterior product of the space of
1-forms Q'(P) over the R-algebra C*°(P) of smooth functions.

For an arbitrary associative algebra A, the exterior product of modules over A is not well-
defined. However, notice the following: taking a local frame (eq,...,e,) of T*P such that

e1N---Ne =
and putting Le(e;) = flej, we have
Lé(y,):Zel/\---/\ffei/\---/\er:fo,u.
Then, define a (local) flat connection V on T*X by V(e;) = 0 and the divergence associated
with the connection by
DivY (€) = Tr(L¢ — V). (1)

This formulation only uses a connection, the Lie derivative and the trace map, all of which can
be defined within non-commutative geometry. In this virtue, we regard a flat connection V as
a substitute for a volume form.

With this seen, we recall some preliminary tools from non-commutative geometry. Let
A° = A® A be the universal enveloping algebra of A.

Definition 2.5.
e The space of 1-forms in defined by
QA = Ker(A® A 22 4)

This is naturally an A-bimodule. We put da = 1® a —a ® 1. With this notation, we have
the Leibniz rule for d:

d(ab) = (da)b+ a(db) for all a,b € A.

A double derivation § € DDer(A) is equivalent to an A-bimodule map ig: Q'A = A® A,
and they are related by the formula iy(da) = 6(a).



e The Lie derivative Ly on Q'A by a double derivation # € DDer(A) is defined by
Lo(adb) = 0(a)’ @ 0(a)"db + adf(b)’ @ O(b)" + af(b)’ @ dO(b)".
This is an element of (Q'A® A) © (A ® Q' A).
e A connection on an A-bimodule F is a K-linear map
V:E- QA EQE®, QA
satisfying the Leibniz rule
V(aeb) = da @ eb+ aV(e)b+ ae @ db
for a,b€e Aand e € F.
e For a connection V on E and a double derivation 8, we put
Vo EL QA9  Ea EwyQ'A
BT, (A9 A) A E@E9a(Av A) = (A9 E) e (E® A).

Note that, in the case of F = Q'A, the domains and codomains of the maps Vg and Ly
are the same.

We want to imitate the formula (1), so we need the trace map.

Definition 2.6. Let B be an associative K-algebra, E a left B-module and W a B-bimodule.
Suppose that F is finitely generated and projective. Then, the trace map Tr is defined by the
composition

Tr: Homp(E,W ®@p E) 2 E*®@p W ® E — |W|:=HHy(B,W) = W/[B,W],
ERQuW® e ele)w
where E* = Homp(E, B) is the dual module, which is a right B-module.

Nowset B=A° E=Q'Aand W = (A® A® AP) @ (A® A @ A°). Then, we have the
following canonical isomorphism:

(A®E)® (FE®A) =W g E.
Definition 2.7. The triple divergence associated with a connection V on Q' A is defined by

TDivY: DDer(A) — |[W| 2 A® |[A|® |A|® A,
0 — TI“(LQ — VQ) .
Combining a double bracket Il with the triple divergence above, we have the map
TDivV

drv: AL DDer(A) 225 An |Alo A0 A,

which is an analogue of a modular vector field.



3. TURAEV’S LOOP OPERATION

We begin this section by recalling another loop operation g introduced by Turaev [Tur79].
Fix a framing fr (i.e., a non-vanishing vector field) on 3. The base points e, x and an arc v are
taken as in Example 2.3.

Definition 3.1. The K-linear map ju,: Kr — |Kn| ® Kz is defined as follows: for a € 7
represented by a generically immersed path based at *, first deform « into a path from e to
x by sliding the endpoint along the arc v, and insert positive or negative monogons so that
rot(a) = —1/2. Then,

NT(O‘) = Z Sign(p; Qfirst asecond) |app’ & Qlapx-
peSelf()

Here Self(«) is the set of self-intersections of «, and agg is the velocity vector of a passing p
for the first time. gecong is analogously defined.

Similarly, the K-linear map p;: K — Kz @ |[Kr| is defined as follows: for o € 7 represented
by a generically immersed path based at *, first deform « into a path from * to e by sliding the
endpoint along v, and insert positive or negative monogons so that rotfr(a) = 1/2. Then,

/1/1(0() = — Z Sign(p; Ofirst, (]‘second)a*pO ® |(¥PP"
pESelf(a)

Set = py + py: Kr — (|[Kr| @ Kr) @ (Kr @ [Krrl).

Now we apply the construction in the last section in the case of the surface A = Kx and
see what the map ¢y v describes. First, note that the fundamental group 7 of the surface X
is a free group since we assumed that the boundary is non-empty. We have to check that QA4
satisfies the assumption in Definition 2.6 to apply the construction of the triple divergence. In
fact, we have the following:

Lemma 3.2. For a surface ¥ above, the A-bimodule Q'A is finitely generated and free. In
particular, for any free generating system C = {7;}1<i<, of 7, the set {dv;}1<i<r is an A®- free
basis of QL A.

By the lemma above, we can define the connection V¢ associated with C by
Ve(dvyiv; ') =0

for all 7; this uniquely defines the connection due to the Leibniz rule.
The main result is the following;:

Theorem 3.3 ([Tan24]). We have ¢, v, = p for a suitable free-generating system C and a
framing fr such that rotf'(c) =0 for any c € C represented by a simple curve.

For the concrete description of the generating system C, see Figure 2 of [Tan24].
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