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1 Introduction

This note is a summary of the results given in [26, 27, 29]. A surface-link is a closed surface
smoothly embedded in R*, and a surface-knot is a connected surface-link. Two surface-
links are said to be equivalent if they are related by a smooth isotopy of R*. Throughout
this paper, we work in either the smooth category or the PL category. Surfaces embedded
in R* are assumed to be locally flat in the PL category. .

For a braid /3 of degree 2m (m > 1), the plat closure of /3, denoted by f, is the link
obtained by attaching arcs to 8 as shown in Figure 1. We call B a plat presentation of a
link L if g is ambiently isotopic to L. Every link has a plat presentation.
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Figure 1: The plat closure of a braid 3

In [17, 18], Rudolph introduced braided surfaces as higher-dimensional analogues of
classical braids, and Viro [23] introduced 2-dimensional braids, which are special cases of
braided surfaces. These surfaces are defined in Section 2. A 2-dimensional braid gives
rise to an orientable surface-link by taking its closure. It was shown in [6, 23] that every
orientable surface-link is equivalent to the closure of a 2-dimensional braid. Therefore,
orientable surface-links can be studied via 2-dimensional braids. On the other hand,
non-orientable surface-links cannot be studied in this way.

The aims of this note are to introduce plat presentations of surface-links and to study
invariants of surface-links via this presentation. In Section 2, we define the plat closure
S of an adequate braided surface S. We call S a plat presentation of a surface-link F if
it is equivalent to F'. Every (possibly non-orientable) surface-link has a plat presentation
(Theorem 2.1). Therefore, this framework allows us to study surface-links using braided
surfaces.

The plat index and genuine plat index are invariants of a surface-link defined by using
plat presentations. In Section 3, we review several results on these indices. Also, we
discuss the additivity of the plat index.

The knot group of a surface-link is the fundamental group of its exterior. As an
application of plat presentations, we provide a necessary and sufficient condition for a



group to be the knot group of a surface-link (Theorem 4.7). A symmetric quandle is a
useful algebraic system to study surface-links. The knot symmetric quandle is defined for
a surface-link, which is an invariant of a surface-link. Then, we provide similar condition
for a symmetric quandle to be the knot symmetric quandle of a surface-link (Theorem 5.5).

2 Plat closures of braided surfaces

In this section, we review braids and braided surfaces, and define the plat closure of a
braided surface.

2.1 Braids and braided surfaces

Let D? be a 2-disk in R? and X,,, be an m-point subset of int(D?), where m is a positive
integer. Let I = [0,1], and let py : D? x I — I be the projection map onto the second
factor. A braid of degree m is a union S of m curves in D? x I such that the restriction
g = palg : B — I is a covering map of degree m and 98 = X,,, x 0I. Two braids of degree
m are said to be equivalent if they are related by an isotopy of D? x I fixing D? x 0I
pointwise. The braid group B,, of degree m is the group of equivalence classes of braids
of degree m. B,, has the following presentation due to Artin [1]:

<O’17 ey Om—1 | 0i0i410; = 044100441, 0,05 = 0;0; (|Z — ]| > 1)> .

Let B? be a 2-disk in R?, and let pry : D? x B> — B2 be the projection onto the
second factor. A braided surface [17, 18] is a compact surface S embedded in D? x B?
such that the restriction mg = pry|s : S — B? is a simple branched covering map'. The
degree of a braided surface S is the degree of the covering map mg. Two braided surfaces
So and S; are said to be equivalent (in the strong sense) if there exists an isotopy {H; }ier
of D? x B? fixing D? x B? pointwise such that

[ H() = ld, Hl(Sg) = Sl, and
e H,(Sy) is a braided surface for all ¢ € I.

By definition, the boundary 95 is a closed braid of degree m in D? x 0B%. We fix a base
point yo € B2, A braided surface S of degree m is called pointed if S N (D?* x {yo}) =
XX {yo}. In this note, a braided surface is assumed to be pointed unless otherwise stated.
A 2-dimensional braid [5, 23] of degree m is a braided surface S such that 9S = X,,, x 9B

2.2 The plat closure of braided surfaces

A wicket [2] is a semicircle properly embedded in int(D?) x I that meets D? x {0} orthog-
onally at its endpoints. A wicket is uniquely determined by its boundary; If two wickets
share the same boundary, then they are identical. A union of m disjoint wickets is called
a configuration of m wickets (m > 1).

LA branched covering map f: X — Y of degree m is called simple if |f~1(y)| € {m,m — 1} holds for y € Y.



Suppose that Xy, = {z1,22,...,22,} is a set of 2m points lying in this order on a
line in D?. Let w,, be the configuration of m wickets such that dw,, = Xs,, and, for each
i=1,2,...,m, the pair {x9; 1,29} is the set of endpoints of a wicket in w,,.

The configuration space of m wickets is denoted by W,,. For a loop f : (1,0I) —
(Wi, wy,), we define the braid Sy of degree 2m by

Br = Jm@f(t) x {t} ¢ D*x1,

tel

where p; : D? x I — D? is the projection onto the first factor. Then, the group homo-
morphism @ : w1 (Wi, Wi) — By, is defined as the map that sends [f] € 13 (Wi, wy,) to
[5¢] € Banm. In [2], Brendle and Hatcher proved that this homomorphism @ is injective,
and the image of @ is the subgroup of B, defined by

-1 1 -
(01,02010309, 0902109104, |1 =1,2,....m —1).

We call it the Hilden subgroup of Bs,,, denoted by Ky,,.

Next, we define the plat closure of a braided surface. Let S be a braided surface of
degree 2m. We assume that B? is the unit disk in C. Then, we define the braid Bs of
degree 2m by

Bs = Jpr,(0S N D? x {e*™'}) x {t} < D*x 1,

tel

where pr, : D? x B? — D? is the projection onto the first factor. Then, a braided surface
S is called adequate if Bs = (¢ holds for some loop f : (1,01) = W, wsm). By the
rigidity of a wicket, such a loop f is unique for S, so we denote it by fs. The degree
of an adequate braided surface is even, and every 2-dimensional braid of even degree is
adequate.

We assume that S is adequate. Fort € I, let J, = {re*™ |1 <r <2} and N = U,; /i,
where Jy = J;. Let w; be the configuration of 2m wickets fs(t) in D* x J; such that
Owy C D? x {e*™*}. We define Ag as the union of w; for ¢ € I. Then, Ag is the surface
embedded in D? x N such that AgNS = 0Ag = 0S. Hence, the union AgUJS is a surface-
link in R*. We call it the plat closure of S, denoted by S. We call S a plat presentation
of a surface-link F' if it is equivalent to F'.

Theorem 2.1 ([29]). Every surface-link has a plat presentation.

We call S a genuine plat presentation of a surface-link F if S is a 2-dimensional braid
whose plat closure is equivalent to F.

Theorem 2.2 ([29]). Every orientable surface-link has a genuine plat presentation.

Let e(F) be the normal Euler number of a surface-knot F ([9, 15]). For a 2-dimensional
braid S of even degree, each component of S has the normal Euler number zero. On the
other hand, the converse remains open:

Conjecture 2.3. Fvery surface-link, each of whose components F' satisfics e(F') =0, has
a genuine plat presentation.



3 Plat index of surface-links

In this section, we define the plat index and genuine plat index of a surface-link, and give
several results on these indices.

Definition 3.1. The plat index of a surface-link F'; denoted by Plat(F'), is defined as the
half of minimum number of degrees of adequate braided surfaces whose plat closures are
equivalent to F.

Definition 3.2. The genuine plat index of a surface-link F', denoted by g.Plat(F), is
defined as either the half of minimum number of degrees of 2-dimensional braids whose
plat closures are equivalent to F', or +oo if there are no such 2-dimensional braids.

The plat index of a classical link is defined in a similar way. It coincides with the bridge
index of a classical link. Hence, the plat index and genuine plat index of a surface-link
are higher-dimensional analogues of the bridge index of a link.

A 2-knot is a surface-knot homeomorphic to the 2-sphere S?. Surface-links with the
plat index (or the genuine plat index) equal to one are determined as follows:

Proposition 3.3 ([29]). Let F be a surface-link.

e The plat index of F' is one if and only if F' is either a trivial 2-knot or a trivial
non-orientable surface-knot.

e The genuine plat index of F is one if and only if F' is either a trivial 2-knot or a
trivial non-orientable surface-knot with e(F') = 0.

We remark that for a trivial orientable surface-knot F' of positive genus, both the plat
index and the genuine plat index of F' are equal to two.

A 2-link is a union of disjoint 2-knots. A surface-link is called ribbon [12, 24] if it is
obtained from a trivial 2-link F{ by surgery along 1-handles attached to Fg.

Proposition 3.4 ([28, 29]). Let F' be an m-component 2-link, where m is a positive
integer. Then, F is ribbon if g.Plat(F) = m + 1.

By definition, the inequality Plat(F) < g.Plat(F') holds for any surface-link F. Fur-
thermore, we have the following result.

Proposition 3.5 ([27, 29]). Let F' be a surface-link. Let Braid(F') denote the braid index
[5] of F, and let mrk(F) denote the meridional rank? of F. Here, we define Braid(F) =
+oo if F' is non-orientable. Then, we have the following inequalities:

mrk(F') < Plat(F') < g.Plat(F') < Braid(F).

Remark 3.6. For each inequality in Proposition 3.5, there exists a surface-link satisfying
the inequality strictly.

e Let F' be a trivial orientable surface-knot with positive genus. Then, we have
Plat(F) = 2. On the other hand, we have mrk(F) = 1 since F is trivial. The
author does not know such examples of 2-knots.

2The meridional rank of F is the minimum number of meridians of F' needed to generate the knot group 71 (R* \ F).



e Let F' be the 2-twist spun 2-knot of the trefoil [30]. It was shown in [29] that
Plat(F) = 2. On the other hand, F'is not ribbon. Hence, we have 2 < g.Plat(F) by
Proposition 3.4.

e Let F' be the non-trivial 2-knot denoted by 2_2 in the table in [12]. It was shown in
[29] that g.Plat(F') = 2. Since any surface-link with the braid index less than three
is trivial ([5]), we have Braid(F") > 3.

Theorem 3.7 ([27]). For any integers g > 0 and m > 1, there exist infinitely many
orientable surface-knots F' of genus g with Plat(F') = g.Plat(F') = m.

In the rest of this section, we consider the additivity of the plat index for connected
sums. For the bridge index of a knot, the following is well-known:

Theorem 3.8 ([20]). The bridge index is additive for the connected sum of knots:
b(K1fK>) = b(Ky) + b(K>) — 1.
For the plat index of 2-knots, the following remains open:

Question 3.9. Is the plat index additive for the connected sum of 2-knots:
Plat(F14F3) = Plat(Fy) + Plat(F,) — 17

In general, the plat index is not always additive for the connected sum of surface-knots,
as shown by the following examples:

e Let I} and F, be trivial orientable surface-knots with positive genus. Since Fi#F5 is
also trivial, we have Plat(F1£F3) = 2 < Plat(F}) + Plat(Fy) — 1 = 3.

e In [22], Viro showed that there exist non-trivial ribbon 2-knots F such that FfP? is
equivalent to P?, where P? is a trivial RP?-knot. Therefore, we have Plat(F$P?) =
1 <2+1—1<Plat(F) + Plat(P?) — 1. Similar examples are shown in [14, 19].

In [11], Kamada, Satoh, and Takabayashi proved that the braid index is not additive
for the connected sum of non-trivial 2-knots.

4 Characterizations of knot groups of surface-links

For a link /surface-link, the knot group is defined as the fundamental group of its comple-
ment. In this section, we review a necessary and sufficient condition for a group to be the
knot group of a link/surface-link. Using the plat closure of a braided surface, we obtain
a characterization of the knot groups of surface-links (Theorem 4.7).

Let F,, = (x1,29,..., %) be the free group, where m is a positive integer. We define
the left action of the braid group B, on F,, as follows: For o, € B,, and z; € F,,, we
define o, - x; and o; ' - z; by

vz (J=1), Tit1 ( =1),
0w = { G=i+1), o'y = Qahwan (G=i+1),
T (otherwise), T, (otherwise).



Then, this induces the action of B,, on F,,.
A Wirtinger presentation (A | R) of a group is a finite presentation such that each
relation in R is of the form w™'aw = b for some a,b € S and w € (A).

Theorem 4.1 ([1]). A group G is the knot group of a classical link if and only if there
exist a positive integer m and a braid b € B,, such that G has a Wirtinger presentation

(1, T2 T | by = 2;(1=1,2,...,m)).

Let n > 1 be an integer. An n-knot is a smoothly embedded n-sphere S™ in S"*2. For
higher-dimensional knots, Kervaire gave the following characterization of knot groups.

Theorem 4.2 ([13]). For n > 3, a group G is the knot group of an n-knot if and only if
G satisfies the following conditions:

(1) The weight of G is one; G = ((z)).
(2) Hy(G) =0.
(3) G/|G, G| is isomorphic to Z.

We consider the knot group of 2-knots and surface-links. In the case of ribbon 2-knots,
a criterion involving Wirtinger presentations is known.

Theorem 4.3 ([25]). A group G is the knot group of a ribbon 2-knot if and only if G
satisfies the following conditions:

(1) G has a Wirtinger presentation with deficiency one.
(2) G/|G, G| is isomorphic to Z.

Gonzélez-Acuna [3] and Kamada [6] independently proved a characterization of the
knot groups of 2-knots and orientable surface-links. We recall the result due to Kamada
as follows: Let by,bs,...,b, € B,,, where n is a non-negative integer. Then, an (m,n)-
presentation (associated with by, ba, ..., b,) of a group is a presentation

<:E1,332,...,xm]bi-$1:bi~$2 (Z:1,2,,H)>

We say that an (m,n)-presentation (associated with by, bo,...,b,,) satisfies the O-
condition if there exist n signs €1,¢s,...,&, € {1,—1} such that

n

-1 _¢&;
HbZ Ullbi - 1m7
=1

where 1,, € B,, is the unit element.

Proposition 4.4 ([6, 17]). Let S be a braided surface of degree m with n branch points.
There exist n braids by, by, ..., b, € B, and n signs €1,&s,...,e, € {1,—1} such that
the knot group G(S) = m(D* x B>\ S) of S has an (m,n)-presentation associated with
b1, bo, ..., b, satisfying

[To7 ot = (8]
i=1



In particular, the knot group of a 2-dimensional braid of degree m with n branch points
has an (m,n)-presentation satisfying the 0-condition.

Theorem 4.5 ([6]). A group G is the knot group of a c-component orientable surface-link
with the Euler characteristic x if and only if G satisfies the following conditions for some
mtegers m > 1 and n > 0 such that x = 2m — n:

(1) G has an (m,n)-presentation satisfying the 0-condition.
(2) G/|G, G| is isomorphic to Z°.

Corollary 4.6. A group G is the knot group of a 2-knot if and only if G satisfies the
following conditions for some integer m > 1:

(1) G has an (m,2m — 2)-presentation satisfying the 0-condition.
(2) G/|G, G| is isomorphic to Z.

We remark that a group is the knot group of an orientable surface-link if and only if
it has a finite Wirtinger presentation, and such a surface-link can be realized by a ribbon
surface-link (cf. [6, 21]).

A (2m,n)-presentation with inverses (associated with by, ba, ..., b,) is a group presen-
tation

— — -1 - -
<l’1,1’2,...,1}2m|bi'l’1—bi'l’g, x2j—1—$2j (2—1,2,...,71, j—1,2,...,m) >

This presentation is obtained from a (2m,n)-presentation by adding m new relations
Toj_1 = :1;2_]-1 for j = 1,2,...,m. We say that a (2m,n)-presentation satisfies the weak
0-condition if there exist n signs e1,¢€9,...,&, € {1,—1} such that

n
[16: o5t € Kom.
i=1
By Proposition 4.4, the knot group of an adequate braided surface of degree 2m with n
branch points has a (2m,n)-presentation satisfying the weak 0-condition.
A surface-link F' is called (c,d)-component if F' consists of ¢ orientable surface-knots
and d non-orientable ones.

Theorem 4.7. A group G is the knot group of a (c,d)-component surface-link with the
Euler characteristic x if and only if G satisfies the following conditions for some integers
m > 1 andn >0 such that x =2m — n:

(1) G has a (2m,n)-presentation with inverses satisfying the weak 0-condition.
(2) G/|G,G] is isomorphic to Z¢ @ (Z/2)".
The key proposition used to prove Theorem 4.7 is the following:

Proposition 4.8. Let S be an adequate braided surface of degree 2m with n branch points.
Then, the knot group of S has a (2m,n)-presentation satisfying the weak O0-condition.

We remark that a group is the knot group of a surface-link if and only if it has a
twisted Wirtinger presentation. Here, a twisted Wirtinger presentation of a group is a

finite presentation (A | R) such that each relation in R is of the form w™'a*w = b, where

a,be A, we (A), and € € {1,—1}.



5 Characterizations of knot symmetric quandles of surface-links

In this section, we recall symmetric quandles and provide a necessary and sufficient con-
dition for a group to be the knot symmetric quandle of a surface-link.

A quandle [4, 16] is a set () with a binary operation * : Q x Q@ — @ satisfying the
following conditions:

(1) For any x € @, we have = xx = x.
(2) For any y € @, the map S, : Q — @ defined by sending = to = * y is a bijection.
(3) For any x,y,z € Q, we have (x xy) % z = (v * y) * (v * 2).

For a quandle @, we define another operation * on @) by zxy = S Yx) for z,y € Q.
Then, (Q,*) is a quandle. This operation * is called the dual operation of Q.

For quandles @ and @y, a map f : Q1 — Q2 is a quandle homomorphism if f(zxy) =
f(x)* f(y) holds for any z,y € Q1. It is known that S, is a quandle automorphism of Q.
Let Aut(Q) be the group of quandle automorphisms of @), and let Inn(Q) be the subgroup
of Aut(Q) generated by S, for y € Q.

The action of Inn(Q) on @ is defined by f-x = f(z) for f € Inn(Q) and z € Q. A
quandle @ is called connected if the action of Inn(@Q) on @ is transitive. Similarly, an
orbit of the action of Inn(Q) on @ is called a connected component of (). We notice that
each connected component of () is a subquandle of Q).

A symmetric quandle [7, 10] is a pair (Q, p) of a quandle () and an involution map
p:Q — Q of Q, called a good involution, satisfying the following conditions:

(1) For any x,y € @, we have p(z xy) = p(z) * y.
(2) For any x,y € @, we have z * p(y) = z*y.

For symmetric quandles (Q1,p1) and (Q2,p2), a map f : Q1 — Q2 is a symmetric
quandle homomorphism if it is a quandle homomorphism satisfying f o p; = ps o f.
We here give examples of symmetric quandles.

Example 5.1 (Double of a quandle [7, 10]). Let Q be a quandle and Q = {@ | a € Q} a
copy of (). We extend the binary operation % on @ into the disjoint union D(Q) = QU Q:

3
=

axb:=a%¥b, axb:=axb, axb:=a

Then (D(Q), %) is a quandle. We define a good involution p on D(Q) by setting p(a) = a.
The symmetric quandle (D(Q), p) is called the double of Q.

Example 5.2 (Knot symmetric quandles [7, 10]). Let K be a properly embedded n-
submanifold in a connected (n 4+ 2)-manifold M. We fix a point p € E(K). An (oriented)
noose of K is a pair (D, «) of an oriented meridional disk D of K and an oriented arc «
in F(K) connecting from a point of 0D to p.

The set of homotopy classes [( D, a)] of all oriented nooses of K is denoted by Q(M, K, p)

or Q(K,p) simply. Note that [(D,a)] and [(—D, )] represent different homotopy classes



if K is orientable, where —D is D with the reversed orientation. The full knot quandle of
K is Q(M, K, p) with the binary operation % defined by

[(D,a)] *[(D',a)] = [(D,a-a/~'0D'a))].

See Figure 2 for a topological description of the operation on Q(M , K,p). The isomor-

Figure 2: The operation of the full knot quandle Q(K, p)

phism class of the full knot quandle does not depend on the base point p. Hence, we
denote the full knot quandle by Q(M, K) or Q(K) simply.

The knot symmetric quandle (or fundamental symmetric quandle) of K, denoted by
X(M,K) (or X(K) simply), is the pair of Q(M,K) and the good involution pgx of
Q(M, K) defined by pr([(D,)]) = [(—D, )] for [(D, )] € Q(M, K).

Example 5.3 (Free symmetric quandle [8]). Let A be a non-empty set and F'(A) be the
free group on A. We define the binary operation * on FR(A) = A x F(A) by

(a,w) * (byu) = (a,wu'bu) (a,b€ A, w,u€ F(A)).

Let ~, be the equivalence relation on FR(A) generated by (a,w) ~, (a,aw) for a € A
and w € F(A). Then, the binary operation on FR(A) induces a well-defined operation
on the quotient set FQ(A) = FR(A)/ ~,, which is called the free quandle on A.

The free symmetric quandle on A, denoted by FSQ(A), is defined as the double of the
free quandle FQ(A) on A. The underlying set of FSQ(A) is (AU A) x F(A), where we
identify @ € A with a=' € F(A). The good involution of FSQ(A) sends (a,w) to (@, w)
for a € A and w € F(A).

For a € AUA and w € F(A), we write (a,1) and (a,w) in FSQ(A) as a and a®,
respectively, where 1 € F/(A) is the unit element.

Next, we introduce a presentation of a symmetric quandle. A free symmetric quandle
satisfies the following universal property:

Proposition 5.4 ([27]). Let A be a non-empty set and X a symmetric quandle. Let
ta : A — FSQ(A) be the map sending a € A to a € FSQ(A). Then, for any map
f: A= X, there exists a unique symmetric quandle homomorphism f : FSQ(A) — X
such that fous = f.

Let R be a subset of FSQ(A) x FSQ(A) and X a symmetric quandle. Then, we say
that X has a presentation (A | R)sq if X satisfies the following conditions for some map
iy A — X:



(1) (Ix x 7x)(R) € X x X is contained in the diagonal set of X x X, where 7x :
FSQ(A) — X is the homomorphism obtained from Proposition 5.4.

(2) For any symmetric quandle Y and any map ¢y : A — Y satisfying (1), there exists
a unique symmetric quandle homomorphism f : X — Y such that ¢y = f o x.

A construction of a symmetric quandle X having a presentation (A | R)s, is explained in
8, 27]. We write each relation (x,y) € R by the form z = y.

It is known that X (D? X,,) is isomorphic to the free symmetric quandle FSQ(X,,)
on X,, = {z1,29,...,2,}. We define the left action of B, on FSQ(X,,) as follows: For
0; € By, and z; € FSQ(X,,), we define o; - x; and o; ' - x; by

Tin xT; (J=1), Tit1 (=1),
0wy = Q@ G=i+1), otz = Juirain =i+l
x; (otherwise), T, (otherwise).

We define o, - 7; = 0, - 7;, where o; - x; is the image of o; - x; by the good involution of
FSQ(X,,). Then, this induces the action of B,, on FSQ(X,,).
Let by, bs, ..., b, € By, where n is a non-negative integer. A (2m,n)-presentation with
inverses (associated with by, by, ..., b,) of a symmetric quandle is a presentation
<$1,...,I2m| bimrl :bi'Ig, Toj—1 :LU_QJ (Z = 1,2,...,7”&, j: 1,2,...,m) >sq'
A (2m, n)-presentation with inverses associated with by, bs, . .., b, of a symmetric quandle
is said to satisfy the weak 0-condition if there exist q,¢€9,...,&, € {1, —1} such that

Hb;lgiibi e K,,.
i=1
Theorem 5.5 ([26]). A symmetric quandle (Q,p) is the knot symmetric quandle of a

(¢, d)-component surface-link with the Euler characteristic x if and only if (Q, p) satisfies
the following conditions for some integers m > 1 and n > 0 such that x = 2m — n:

(1) (Q, p) has a (2m,n)-presentation with inverses satisfying the weak 0-condition.

(2) Q consists of 2c + d connected components Xy,..., X, Y1,...,Ye, and Zy,...,Zq
such that p(X;) =Y; and p(Z;) = Z; for eachi=1,2,...,cand j =1,2,...,d.

We remark that every symmetric quandle admitting a finite presentation is the knot
symmetric quandle of some ribbon surface-link. The key proposition used to prove The-
orem 5.5 is the following:

Proposition 5.6 ([26]). Let S be an adequate braided surface of degree 2m with n branch
points. Then, the knot symmetric quandle of S has a (2m,n)-presentation with inverses
satisfying the weak 0-condition.

10
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