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1 Introduction

A spatial surface is a compact surface embedded in the 3-sphere S% = R3 LU {co}. In this
note, we assume that (1) spatial surfaces are oriented and that (2) connected components
of spatial surfaces are neither 2-disks nor closed surfaces. The aim of this note is to
introduce the concept of a groupoid rack, an algebraic system for constructing invariants
of spatial surfaces.

2 Handlebody-knots and spatial surfaces

A spatial trivalent graph is a finite trivalent graph embedded in S®. In this note, we allow
trivalent graphs to have loops, multiple edges, and S'-components, i.e., edges without
vertices. We regard knots as spatial trivalent graphs without vertices. Diagrams of
spatial trivalent graphs are defined as usual in knot theory. An edge of a diagram D of a
spatial trivalent graph G is a sub-diagram of D that presents an edge of G. In particular,
an edge of D of G that presents an S'-component of G is called an S!'-component of
D. A handlebody-knot [3] is a handlebody embedded in S3. Two handlebody-knots H;
and H, are said to be equivalent (H; = H,) if they are ambiently isotopic in S3. Every
handlebody-knot is obtained as a regular neighborhood of a spatial trivalent graph. A
diagram of a handlebody-knot H is a diagram of a spatial trivalent graph G such that
the regular neighborhood of G is equivalent to H. We denote by H(D) the handlebody-
knot whose diagram is D. In [3], a Reidemeister-type theorem for handlebody-knots was
introduced.

Theorem 2.1 ([3]). Two handlebody-knots are equivalent if and only if their diagrams
are related by a finite sequence of R1-R6 moves, depicted in Fig. 1, and isoopies in S?.

A spatial surface is a compact surface embedded in S®. Two spatial surfaces F} and F}
are said to be equivalent (Fy = Fy) if they are ambiently isotopic in S. Thoroughout this
note, we assume that (1) a spatial surface is oriented and that (2) each component of a
spatial surface is neither a closed disk nor a closed surface. Under the assumptions, spatial
surfaces are Seifert surfaces for their boundaries. As a remark, if two spatial surfaces with
the same boundary are not equivalent, then they are not equivalent as Seifert surfaces for
the boundary. Let D be a diagram of a spatial trivalent graph. The spatial surface F'(D)
is obtained from D as illustrated in Fig. 2.
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Figure 1: Local moves on diagrams of spatial trivalent graphs
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Figure 2: A construction of F(D)

For any spatial surface F', there exists a diagram D such that F' = F(D), [6, 9]. A
diagram of a spatial surface F'is a diagram D such that F'(D) is equivalent to F. As in
the case of handlebody-knots, a Reidemeister-type theorem holds for spatial surfaces, [9].

Theorem 2.2 ([9]). Two spatial surfaces are equivalent if and only if their diagrams are
related by a finite sequence of R2, R3, R5, and R6 moves, depicted in Fig. 1, and isotopies
in S2.

3 Groupoid racks

Definition 3.1 ([7, 10]). A rack is a pair X = (X,<) of a set X and a binary operation
<: X x X — X satisfying the following two conditions:

e For any y € X, the map S, : X — X, defined by S,(x) = x <y, is bijective.
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e For any z,y,z € X, (x<qy)<z=(r<z)<(y<2).
A rack X = (X, <) is called a quandle if it satisfies the following condition:
o Foranyr € X,z <z = .

We give some examples of racks and quandles. Let n € Z~y be a positive integer. The
cyclic group 7Z, with the binary operation <, defined by x <y = 2y — z, is a quandle,
called the dihedral quandle. The cyclic group Z, with the binary operation <, defined by
r<y = x4+ 1, is a rack, called cyclic rack. Let Ry and Ry be racks. Then R; X Ry is a
rack with the binary operation < defined by (x1,x2) < (y1,y2) = (21 <1 Y1, T2 <2 Ya), Where
for each 7 € {1,2}, <; : R; X R; — R; is a rack operation on R;.

Definition 3.2 ([5, 6]). Let {Gx},c, be a family of groups and ey the identity element
of the group G, for each A € A. A multiple group rack (MGR) X = (X, <) is a pair of the
disjoint union X = | |,., G\ of groups and a binary operation <: X x X — X satisfying
the following three conditions:

e For any x € X, for any A € A, and for any a,b € G,, x < (ab) = (z <a)<b and
rdey=x.

e For any z,y,z € X, (x<qy)<dz=(r<z)<(y<z).
e For any x € X and for any A\ € A, there exists 1 € A such that for any a,b € G,
a<dz,b<azr € G, and (ab) <z = (a<z)(b< ).

An MGR X = | |, G\ is called a multiple conjugation quandle (MCQ) if it satisfies the
following condition:

e For any A € A and for any a,b € Gy, a<b = b"tab.
An example of an MGR is given in the proof of Theorem 4.3.

Definition 3.3 ([11]). Let R be a rack with a rack operation * : R x R — R. Then
R x R is a rack with the binary operation < : (R X R) X (R x R) — R X R defined by
(z,y)<(z,w) = ((x*712) % w, (y*1 2) xw). The heap rack R X R is the rack R x R with
the partial operation (z,y)(y, z) = (z, 2).

A groupoid is a category in which all morphisms are invertible. In this note, we denote
the composition of morphisms f and g with cod(f) = dom(g) in a category by fg.

Definition 3.4 ([1]). Let C be a groupoid. A groupoid rack X = (X, <) associated with
C is a pair of the set X of all morphisms of C and a binary operation < : X x X — X
satisfying the following three conditions:

e For any z, f,g € X with cod(f) = dom(g), x < (fg) = (x< f)<g and z<id) = =z,
where id) is the identity of the object A.

e For any z,y,z € X, (x<qy)<z=(rx<z2)<(y<2).
e For any z, f,g € X with cod(f) = dom(g),

An MGR X = | [|,co G can be regarded as the groupoid rack associated with the
following groupoid C:



e Ob(C) = A.

e Mor(C) = {(ZC]:/\ A =g,

otherwise.

e Composition: G x Gy — Gy, (a,b) — ab.

e The identity morphism of A € A is the identity element of the group G,.
e The inverse morphism of a morphism = € Gy is ! € G,.

Proposition 3.5. Let X be a groupoid rack associated with a groupoid C. If C satisfies
that for any A\, € A with X # u, Mor(\, u) = 0, then X is an MGR.

Proposition 3.6. Let X = (X, <) be a groupoid rack associated with a groupoid C. If C
satisfies the following, then X is an MCQ.

1. For any A\, i € Ob(C) with X\ # pu, Mor(A, p) = 0.
2. For any A € Ob(C) and for any a,b € Mor(\, \), a<b = b tab.

Remark 3.7. Heap racks can be also regarded as groupoid racks.
A Y-orientation of a diagram of a spatial trivalent graph is an assignment of orien-
tations to all edges of D such that no vertices are sinks or sources, as shown in Fig.
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Figure 3: Orientations around vertices

We remark that every diagram admits a Y-orientation, [5, 8]. A Y-oriented diagram
of a spatial trivalent graph is a diagram with a Y-orientation.

Let D be a Y-oriented diagram. We denote the set of all arcs of D by A(D). Let X be
aset, <: X x X — X a binary operation, P C X x X a subset, and p: P — X a partial
operation on X. An X-coloring of D or a coloring of D by X is a map C : A(D) — X
satifying the conditions depicted in Fig. 4.

We denote the set of all X-colorings by Colx (D).

Theorem 3.8 ([1]). Let D be a Y-oriented diagram, X a set, <: X x X — X a binary
operation, P C X x X a subset, and p : P — X a partial operation on X.

1. If u is a composition of a groupoid C and (X,<) is a groupoid rack associated with
C, then |Colx(D)| is an invariant of the spatial surface F (D).

2. If [Colx(D)| is an invariant of the spatial surface F(D), then U, cp iz y} is a
groupoid rack.
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Figure 4: Coloring conditions at crossings or vertices

Remark 3.9. In Theorem 3.8, if D has a vertex, for any X-coloring C' of D, we have
C(A(D)> C U(z,y)EP {‘r7y}

In what follows, when we consider X-colorings of a diagram by a set X, we assume
the assumption of 1 in Theorem 3.8.

Theorem 3.10 ([5]). Let D be a Y-oriented diagram and X groupoid rack.
1. If X is an MCQ, then |Colx(D)| is an invariant of the handlebody-knot H(D).
2. If |Colx (D)| is an invariant of the handlebody-knot H(D), then X is an MCQ.

4 An infinite family of pairs of Seifert surfaces

A square matrix P is called a unimodular matriz if all its entries are integers and det P =
+1. Two square matrix V; and V5 with integer entries are said to be unimodular-congruent
if there exists a unimodular matrix P such that V, = PV, P, where PT is the transpose
of P. Although a Seifert matrix of a spatial surface depends on the choice of a basis
for the first homology group of the spatial surface, the following result holds for Seifert
matrices for spatial surfaces.

Proposition 4.1. If two spatial surfaces Fy and Fy are equivalent, then their Seifert
matrices are unimodular-congruent.

According to Proposition 4.1, a Seifert matrix of a spatial surface is an invariant of the
spatial surface up to unimodular-congruent.

Corollary 4.2. Let Vi and V4 be Seifert matrices of spatial surfaces Fy and Fs, respec-
tively. If Fy = Fy, then ged{k x k-minors of Vi} = ged {k X k-minors of Va} for any
k€ Zsy.

Theorem 4.3. For any oriented link L, there exists a family {(Fy, F},)}, ez of pairs of
Seifert surfaces for L satisfying the following: R

1. For anyn € Zsq, the regular neighborhoods of F,, and F), are equivalent as handlebody-
knots.

2. For any n € Zsy, Seifert matrices of F,, and F) are unimodular congruent.

3. For any n € Z>o, F,, and F), are not equivalent as spatial surfaces.



Figure 5: A diagram D of F

Sketch of proof. We construct a desired family. We take a Seifert surface F' for L such
that F'is not equivalent to the closed 2-disk. Let D be a diagram of F', as shown in Fig. 5.

For each n € Zs, let D,, and D!, denote the diagrams obtained from by replacing the
outer edge of D in Fig. 5 with the edges shown in Fig. 6.
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Figure 6: Diagrams D,, and D}, (n € Z>¢)

Then it holds OF (D,,) = 0F (D)) = 0F (D) = L. For each n € Zs(, we set F,, = F(D,,)
and F} = F(D)). Then the family {(F,, F})} is the desired family.

Next, we show that the family {(£,, F})}, ez, Consists of infinitely many distinct pairs.

Let V be a Seifert matrix of the Seifert surface F(D) for L. For each k € Zxy,

n€Z>o

0 0 0 0 0
0 0 1 0 0
F}, has the Seifert matrix V, = | -1 0 4 0 0. Weset s € Zsy to be
-1 0 0 442k 0
0O 0O 0 \%

max {i € Z~q | non-zero (i x i)-minors of V'}. If such number does not exist, we define
s = 0. For each k € Z>g, we define Eg 3,5 := ged {(3+ s) X (3 + s)-minors of Vi }. Then,
for any m,n € Z>o withm # n, E,, 315 # E,, 3+5. Using Corollary 4.2, it follows F,, % F,.
Finally, we prove that the claims 1-3.
1. For any n € Zx, the regular neighborhood N (F},) of F,, is equivalent to H(D,,) and
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the regular neighborhood N(F)) of F! is equivalent to H(D,,). The diagrams D,, and D/,
are related by a finite sequence of R1-R6 moves and isotopies in S2. Using Theorem 2.1,
H(D,) = H(D)). Therefore, N(F,) = N(F}).

0 0 0 0 0

0 0 1 0 0

2. Forany n € Zs, F,, and F, has the same Seifert matrix V,, = | =1 0 4 0 0
-1 0 0 442n O

0 0O 0 %4

3. We take the MGR X = | |, ycryxc, ({(2,9)} X Zs) defined by

((x,1),a) if b =0,

(Qy—zit1).a) ifb=1 (@Da@db)=((zi)ath).

((z,2),a) < ((y,4),b) = {

Give Y-orientations to the diagrams D,, and D!. Any X-coloring of D, is given in the
Fig. 7.

x,1),b
(@2,8) ((z,a—a),b—1c)

ORI
v 1 4 ((z,9),¢)
el /\// (@ na)

((z,1),b—¢) ((z,i),a +c)

>
n
>

((z,1),a+b)

V2

((z,7),a +b) “\ ((z,i+€),a+Db)
> D > < '\
x,1),d
(1), d) )( ny
z,1),d
((z,14),d) (i) dse)

Figure 7: X-colored diagram D,

The relations from coloring conditions at the vertices v; and vy is the following:

i—a=1 (mod2),
i+c=1 (mod 2).



Thus we have a = 0 and e = 0.

We set Colx(D; ((x,7),d)) := Col AN PN B
e set Colx (D ((z,7),d)) OX(((:c,i),d) ((wvi)ad))

Then,

|Colx (Dn)| = L] |Colx (D; ((x,17),d))]

((2,0),(b,c,d))€(R3x C2) X Z3
=4 ( L Colx<D;((x,z‘),d))) :
((z1),d)eX

We remark that |Colx(D,,)| > 0 because |Coly (D; ((z,4),0))| > 0 for any (z,i) € R3x Cs.
On the other hand, Any X-coloring of D), is given in the Fig. 8.

x,1),b
((z,1),b) ((% b0

/\/N " ‘l 4 ((z,1),¢)

Y

xz)b—c )

2 XXX \)mw

(2,0),a+b) N\

>

4 ((z,i),a+c)

‘((x,z),a +b—d)

>

((:U7i)aa+b—d—e)—)" l V2
((z,1),a+b) ((z,i+e),a+b)
> D < '\
(@,1), )
) ( ((z,9),e
x,1),d)
(2. i), s

Figure 8: X-colored diagram D/,

The relations from coloring conditions at the vertices v; and vy is the following:
i—a=1 (mod 2),
i+c=1i (mod 2).

Thus we have a = 0 and e = 0.



Then we have

Colx(D})| = N (IColx (D, (2,3), )| - | Colx ({3 o D> - ((2,),8))])

((m,i),(b,c,d))E(R3 X 02) XZ%

=8 |_| |Colx (D, ((x,7),d))| | > |Colx(D,)]|.
((z,i),d)eX

Therefore, F,, 2 F}. O

References

[1] K. Arai, A groupoid rack and spatial surfaces, J. Knot Theory Ramifications 34
(2025), no. 4, 2550016.

[2] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory Rami-
fications 1 (1992), no. 4, 343-406.

[3] A. Ishii, Moves and invariants for knotted handlbodies, Algebr. Geom. Topol. 8
(2008), no. 3, 1403-1418.

[4] A. Ishii, The Markov theorems for spatial graphs and handlebody-knots with Y-
orientations, Internat. J. Math. 26 (2015), no. 14, 1550116, 23.

[5] A. Ishii, A multiple conjugation quandle and handlebody-knots, Topology Appl. 196
(2015), no. part B, 492-500.

[6] A. Ishii, S. Matsuzaki, and T. Murao, A multiple group rack and oriented spatial
surfaces, J. Knot Theory Ramifications 29 (2020), no. 7, 2050046, 20.

[7] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra
23 (1982), no. 1, 37-65.

[8] V. Lebed, Qualgebras and knotted 3-valent graphs, Fund. Math. 230 (2015), no. 2,
167-204.

[9] S. Matsuzaki, A diagrammatic presentation and its characterization of non-split com-
pact surfaces in the 3-sphere, J. Knot Theory Ramifications 30 (2021), no. 9, Paper
No. 2150071, 32.

[10] S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N. S.) 119(161)
(1982), no. 1, 7888, 160.

[11] M. Saito and E. Zappala, Fundamental heaps for surface ribbons and cocycle invari-
ants, Illinois Journal of Mathematics 68 (2024), no. 1, 1-43.



Department of Mathematics, Graduate School of Science
The University of Osaka

1-1, Machikaneyama, Toyonaka, Osaka, 560-0043
JAPAN

E-mail address: u068111h@ecs.osaka-u.ac.jp
KICRZFEREGEH A FERCEE I il

10



