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1 Introduction

This manuscript is based on [6]. A quandle is an algebraic system which can be regarded
as a generalization of the conjugation of a group. Recently, quandles are studied in
many branches of mathematics, for example, in knot theory as an invariant of knots,
symmetric space theory, and so on. The axioms of quandles correspond to the fundamental
transformations for knot diagrams called the Reidemeister moves (see [8] for details),
and correspond to the properties of point symmetries of symmetric spaces (see [9] for
details). In these fields, one often focuses on finite quandles because they give explicit and
computable knot invariants, and are regarded as a discretization of compact symmetric
spaces. On the other hand, there are many interesting examples of countable quandles.
For example, the knot quandle of a non-trivial knot in the 3-sphere is countable. In
addition, discrete subquandles in non-compact symmetric spaces, like the Euclidean space,
and the hyperbolic plane, are countable quandles in general. We focus on such countable
quandles.

Similar to group theory, it is more difficult to study infinite quandles than finite ones.
Here, we recall techniques for geometric group theory. Finitely generated groups are
naturally equipped with a different structure from the group structure: let G be a finitely
generated group and let S be its finite generating set. Then they give a graph structure
for G called the Cayley graph. The graph structure induces a metric on G by the path
metric. The metric depends on the choice of the generating set S, but the quasi-isometry
class is determined independently of that. In other words, the quasi-isometry invariant
for the metric space can be regarded as an invariant of the group.

The notion of the Cayley graph for group is generalized to the Schreier graph for a
set with a group action, whose set of vertices is the set, and whose edges are defined
by a group action on the set (see Subsection 2.2). Connected components of this graph
correspond to the orbits of the action, and become metric spaces by the path metric
induced by the graph structure. The metrics depend on the choice of the generating set,
but quasi-isometry classes of metric spaces are uniquely determined up to the choice of
that.

A quandle structure naturally defines two groups acting on the quandle. One of these is
called the inner automorphism group, which is a group generated by the point symmetries.
The other is called the displacement group, which roughly corresponds to the identity
component of the inner automorphism group. We introduce graph structures on a quandle



by the Schreier graphs with respect to these natural actions. In particular, the graph
structure corresponding to the action of the inner automorphism group is a generalization
of the notion of a diagram of a quandle, which was defined by Winker [14], and has been
studied by several researchers [5, 1, 11]. By rephrasing the properties of the Schreier graph
in terms of our graph of quandles, we immediately obtain that the metrics are determined
up to the choice of finite generating sets (see Theorem 3.4). Therefore, we can now
investigate the geometry of quandles. We note that for a finitely generated quandle, the
inner automorphism group is finitely generated, but the displacement group may not be
finitely generated. If both the inner automorphism group and the displacement group are
finitely generated, then we have two quasi-isometry classes for the quandle. In general,
they are not quasi-isometric by Proposition 3.5.

Finally, we provide some examples whose connected component is quasi-isometric to
typical metric spaces. Similar to the free group, the free quandle with the inner metric
is quasi-isometric to the the tree. In particular, we focus on the generalized Alexander
quandles with the displacement metric. This type of quandle is a group equipped with a
quandle structure given by a group automorphism, which is studied in detail in [4, 3]. Tt
is important in quandle theory, for example, every homogeneous quandle is presented as a
quotient of a generalized Alexander quandle. Any connected component of a generalized
Alexander quandle with the displacement metric is rephrased to the word metric of the
displacement group (Theorem 4.2). Using generalized Alexander quandles, we give exam-
ples of quandles whose connected component is quasi-isometric to the Euclidean spaces,
the hyperbolic plane, and some 3-dimensional homogeneous spaces.

2 Preliminaries

2.1 Quandle

In this subsection, we review some notions of quandles and properties related to group
actions on quandles. The following definitions were originally given by Joyce [7].

Definition 2.1 ([7, 10]). A non-empty set X equipped with a binary operation < is called
a quandle if the following conditions hold:

1. <2 = x holds for any x € X.
2. The map s,: X — X defined by s,(x) := x <y is a bijection for any y € X.
3. (ray)<z=(x<z)<(y<z) holds for any z,y,z € X.
The bijection s,: X — X is called the point symmetry at y. We denote <!y = s, ().

Let X and Y be quandles. A map f: X — Y is called a quandle homomorphism
if it satisfies f(z < 2’) = f(z) < f(2') for any elements z,2” € X. A bijective quandle
homomorphism f: X — Y is called a quandle isomorphism. The automorphism group
Aut(X) is a group consisting of all quandle isomorphisms from X to itself. The binary
operation of Aut(X) is given by fg := go f, and the group acts on the quandle from the
right. A quandle X is said to be homogeneous if Aut(X) acts transitively on X. Note
that any point symmetry s, is a quandle isomorphism.



Definition 2.2. The inner automorphism group of X is a subgroup in Aut(X) generated
by {s, | v € X}, and is denoted by Inn(X). A connected component of X is an orbit
under the action of Inn(X). The set of all connected components of X is denoted by
mo(X) = X/Inn(X). A quandle X is said to be connected if Inn(X) acts transitively on
X.

The following group was defined by Joyce [7] as the transvection group. Roughly
speaking, this group is the unit component of inner automorphism group.

Definition 2.3. The displacement group of a quandle X is the subgroup of Aut(X)
generated by the set {s,s," | z,y € X'}, and is denoted by Dis(X).

We end this subsection with some examples of quandles.

Example 2.4. We define a quandle structure < on Z by
rQAy =2y —x for all z,y € Z.

This quandle is called the infinite dihedral quandle, and is denoted by R... This quandle
can be regarded as a discrete subquandle of the symmetric space R.

Example 2.5. Let G be a group, and let X C G be a nonempty subset that is closed
under conjugation. Then, the set X is a quandle equipped with a binary operation <
defined by

Ty =1y lay, for all z,y € X,

and is called the conjugation quandle.

2.2 Schreier graph

In this subsection, we introduce the notion of Schreier graphs. This graph is regarded as
a generalization of the Cayley graph.

Definition 2.6. Let X be a nonempty set equipped with a right action of a group G, and
let S C G be a generating set. The Schreier graph of the right action of G with respect
to S is the undirected graph Sch(X, G, .S) which is defined as follows:

1. The set of vertices is X.

2. Two vertices  and y are connected by an edge if it satisfies that y = x - s for some
s € SUS™, where S7!:={s7! | s € S}. Then the edge is labeled by s.

Remark 2.7. The Cayley graph of a group G can be regarded as a special case of the
Schreier graph. In fact, the Schreier graph of the natural right action of G on the set G
defined by g - h = gh for g, h € G is the Cayley graph with a certain generating set.

It is easy to show that connected components of the Schreier graph correspond to
orbits of the action. The graph structure of Sch(X, G, S) provides a metric d3™ on each
connected component, in other words, each G-orbit, as the path metric. This metric
depends on the choice of the generating set S. However, if G is finitely generated, then
quasi-isometry class of the metric is determined up to the choice of S as the following

proposition.



Proposition 2.8. Let X be a nonempty set equipped with a right action of a finitely
generated group G. If finite subsets S and T generate the group G, then for any G-orbit
O in X, the identity map id: (O, d3®) — (O, d5") is a quasi-isometry.

3 Metrics for quandle

In this section, we define graph structures for a quandle X by using the framework of the
Schreier graphs.

Definition 3.1. Let X be a quandle.

1. The Schreier graph associated with the action of the inner automorphism group and
its generating set A is denoted by T'i*(X).

2. The Schreier graph associated with the action of the displacement group and its
generating set U is denoted by I'D*(X).

The graph IT'?(X) is a generalization of a diagram of a quandle introduced by Winker
[14]. In fact, if 7" is a generating set of a quandle X, then A := s(T) = {s, | a € T}
generates the inner automorphism group, and the graph I'(X) is isomorphic to the
diagram of the quandle.

The reason that we focus on the groups Inn(X) and Dis(X) comes from the next
proposition.

Proposition 3.2. Let X be a quandle. Then, there exists one to one correspondence
among the set of connected components of X, the set of connected components of T'*(X)
and the set of connected components of TP (X).

Hence, we can define metrics on each connected component of a quandle by the path
metrics induced by the graphs.

Definition 3.3. Let X be a quandle. The metric on a connected component induced
by T2(X) is called the inner metric with respect to a generating set A C Inn(X), and
denoted by d'f™. The metric on a connected component induced by I'D(X) is called the
displacement metric with respect to a generating set U C Dis(X), and denoted by dp®.

As in the case of a word metric for a group, quasi-isometry classes of these metrics are
determined up to the choice of finite generating sets.

Theorem 3.4. Let O be a connected component of a quandle X.

1. For finite generating sets A, B C Inn(X), the metric spaces (O,d5™) and (O, d%™)
are quasi-isometric.

2. For finite generating sets U,V C Dis(X), the metric spaces (O,dp®) and (O,d))
are quasi-isometric.

The inner automorphism group of a finitely generated quandle is finitely generated.
However, there exists a finitely generated quandle whose displacement group is not finitely
generated. In fact, the knot quandle of a non-fibered knot holds this property.



By the above theorem, if both the inner automorphism group and the displacement
group are finitely generated, then we obtain two quasi-isometry classes of metrics on a
connected component. In general, they are not quasi-isometric.

Proposition 3.5. There exist a quandle X and its connected component O which satisfy
the following properties:

1. The groups Inn(X) and Dis(X) are finitely generated.

2. For any finite generating set A of Inn(X) and U of Dis(X), the metric spaces (O, dy™)
and (O, dP¥) are not quasi-isometric.

In fact, the infinite dihedral quandle R, is an example of the above proposition. At
the last of this section, we give propositions for special cases.

Proposition 3.6. Let O and O’ be connected components of a homogeneous quandle X .

1. If A C Inn(X) is a finite generating set, then the metric spaces (O, d%™) and (O, d3™)
are quasi-isometric.

2. If U C Dis(X) is a finite generating set, then the metric spaces (O,d®) and (O',dp)
are quasi-isometric.

Proposition 3.7. Let O be a connected component of a quandle X. Let us assume that
the displacement group is finitely generated, and acts freely on O. Then, the connected
component O with the displacement metric with respect to some finite generating set is
quasi-isometric to the group Dis(X) with a word metric with respect to some finite gen-
erating set.

We note that the inner automorphism group cannot act freely on any connected com-
ponent because of the first axiom of quandles.

4 Example

In this section, we provide some quandles quasi-isometric to certain metric spaces. First,
we consider the free quandles (see [8] for details). We recall that the finitely generated free
groups with word metrics are quasi-isometric to trees. The free quandles hold a similar

property.

Proposition 4.1. Let A be a finite set with the cardinality more than one, and let FQ[A]
be the free quandle generated by A. Then, each connected component of FQ[A] with the
inner metric di™ is quasi-isometric to a tree.

We note that the displacement group of FQ[A] is not finitely generated. Hence, we
cannot apply Theorem 3.4 for the displacement metric of FQ[A].

In the following, we consider the displacement metrics. In particular, we focus on
a special class of quandles. For a group G and a group automorphism o € Aut(G), a
quandle structure < on G is defined by x <y := o(xy~!)y. Then, the quandle is called
the generalized Alezander quandle, and denoted by GAlex(G, o). It is easy to see that



GAlex(G, o) is homogeneous, and the displacement group of the quandle acts freely on
each connected component. The displacement metric of GAlex(G, o) is determined as
follows.

Theorem 4.2. Let G be a group and let o be its group automorphism. If the displacement
group of the generalized Alexander quandle X = GAlex(G, o) is finitely generated, then
any connected component O of the quandle with a displacement metric is quasi-isometric
to the displacement group with a word metric.

Hence, to determine the quasi-isometric class of a connected component of a generalized
Alexander quandle with the displacement metric, it is enough to calculate the quasi-
isometric class of the displacement group with a word metric. The displacement group of
a generalized Alexander quandle is calculated as follows.

Lemma 4.3 (cf. [4]). Let X := GAlex(G,0). We denote the connected component of X
containing 1 € G by P.

1. The subset P is a subgroup of G. Moreover, the group P is isomorphic to the dis-
placement group Dis(X).

2. If the group automorphism o is given as an inner automorphism with respect to
g € G, that is, o(x) = g~ txg for x € G, then P is isomorphic to the commutator

subgroup [{({(g))a, ({9))c] of ({9))a, where {({(g))q is the normal closure of {g} in G.

As a conclusion of this section, we provide concrete examples of generalized Alexander
quandles quasi-isometric to well-known metric spaces, which is the Euclidean spaces, the
hyperbolic plane, and 3-dimensional homogeneous spaces.

Proposition 4.4. Let t be a group automorphism of Z™, and let X = GAlex(Z",t).
Then, any connected component of X with a displacement metric is quasi-isometric to the
k-dimensional Euclidean space, where k = rank(1 — t~1).

Proposition 4.5. Let A*(p, q,r) be the index-2 subgroup of the triangle group A(p,q,r),
that 1s,
A+<p7Q7T) = <a7bac | a'p:bq:CT :CLbC: 1>Grp-

Let us define a group automorphism o: At (p,q,7) — At (p,q,7) by o(g) = a tga. If
i + é + % < 1, then a connected component of GAlex(A*(p,q,r),0) with a displacement
metric is quasi-isometric to the 2-dimensional hyperbolic space.

We note that there exists a surjective quandle homomorphism from the quandle in the
above proposition to a discrete subquandle in the 2-dimensional hyperbolic space with
certain quandle structure.

For a knot K in the 3-sphere S and a positive integer n, a 3-orbifold of the base space
S3 with the singular set K whose cone-angle is equal to 2* is denoted by O(K,n). Let
G(K) = m(8%\ K) be the knot group of K, and fix a meridian p € G(K). Then, it
is known that the orbifold fundamental group G,(K) := 7%®(O(K,n)) is isomorphic to
G(K)/{({1")) k), where ({(u"))c(k) is the normal closure of 4" in G(K). We denote the

image of the meridian in G,,(K) by the same symbol pu.



Proposition 4.6. Let 0: G,(K) — G,(K) be a group automorphism defined by o(g) =
wtgu. If the orbifold O(K,n) is geometric, then any connected component of the quandle
GAlex(G(K),0) with a displacement metric is quasi-isometric to the universal covering

space O(K,n).

Note that there exists a surjective quandle homomorphism from GAlex(G,(K),o) to
the knot n-quandle @Q,(K). Proposition 4.6 gives many examples of quandles quasi-
isometric to 3-dimensional homogeneous spaces.

1. Let K be a hyperbolic knot. If a positive integer n is large enough, then the orbifold
O(K,n) is hyperbolic by the hyperbolic Dehn surgery theorem (for example, see
[12]). Hence, a connected component of GAlex(G,,(K), o) is quasi-isometric to H3.

2. Let K be a Montesinos knot. It is known that the orbifold O(K, 2) has a Seifert struc-
ture by the Montesinos trick. Hence, a connected component of GAlex(G,,(K), o)
is quasi-isometric to one of the following geometries: S* x E!, S% E?, Nil, H?* x E'
and SLy ([13, 2]). For example, if K is the (=2, 3, 7)-pretzel knot, then a connected

component of GAlex(G,,(K), o) is quasi-isometric to S L.

3. According to the classification of geometric orbifolds given by Dunbar [2], we can
construct more examples. A connected component of the quandle GAlex(G3(44),0)
is quasi-isometric to E3, where 4, is the figure-eight knot. A connected component
of the quandle GAlex(Gg(31),0) is quasi-isometric to Nil, where 3; is the trefoil.
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