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This is a list of open problems on low-dimensional topology with expositions of
their history, background, significance, or importance. This list was made by editing
manuscripts written by contributors of open problems to the problem session of the
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1 Generalizing properties from the curve complex in the
framework of Artin groups

(Maria Cumplido)

The braid group on n strands, introduced by Artin at the beginning of the 20th
century, can be identified with the mapping class group of the n-punctured disk.
Algebraically, the braid group is an Artin group that admits the following presen-
tation:

0i0; = 0,0;, for [i — j| > 1
oi0j0; = 0j0,0;, for|i—jl=1 /"

Over the past few decades, both topological and combinatorial approaches have
played central roles in understanding the structure of braid groups. On the one
hand, the combinatorial viewpoint, particularly through Garside theory, has pro-
vided powerful algebraic tools. On the other hand, the topological perspective via
the action of the braid group on the curve complex of the punctured disk has offered
deep geometric insights.

The curve complex of a surface is a simplicial complex whose vertices correspond
to isotopy classes of essential simple closed curves on the surface, with higher-
dimensional simplices representing collections of such curves that can be realized
disjointly. The mapping class group of the surface acts naturally on this complex
by sending curves to their images under homeomorphisms.

This action underlies the Nielsen—Thurston classification, which classifies ele-
ments of the mapping class group into three types. An element g is called:

e periodic if some power of ¢ is the identity,

e reducible if some power of g preserves a simplex (i.e., a collection of disjoint
curves) in the curve complex,

e pseudo-Anosov if neither of the above conditions holds. In the pseudo-Anosov
case, there exist a pair of transverse measured foliations on the surface that are
invariant under g, scaled respectively by a factor A > 1 and 1/\ each time g
acts.

In the 1980s, Birman, Lubotzky and McCarthy [4] established that for every re-
ducible mapping class g, one can canonically choose a collection of invariant curves.
These curves decompose the surface into subsurfaces on which g acts either period-
ically or pseudo-Anosov, yielding a powerful structural understanding of reducible
elements.

In general, an Artin group is defined by a finite set of generators and a sym-
metric matrix (ms,t) where mys = 1 and mg; € {2,3,...,00} for s # t. Its
presentation is:

s,tes”’

Ag = (S| sts--o=tst -, mg; # 00).
Ms,t Ms,t



It is easy to see that the braid group fits this framework. Moreover, braid groups
are examples of spherical-type Artin groups, meaning that their associated Coxeter
groups (obtained by adding the relations s* = 1) are finite. All spherical-type Artin
groups admit a Garside structure.

In the case of braid groups, the vertices of the curve complex of the n-punctured
disk are in bijection with certain subgroups called irreducible parabolic subgroups. A
standard parabolic subgroup of an Artin group Ag is a subgroup Ax generated by a
subset X C S.

For braid groups, if the generators in X are consecutive (i.e., if Ay is irreducible),
then Ax corresponds to a circle C' enclosing the punctures associated with the
generators in X (see the figure below). More generally, a parabolic subgroup is any
conjugate of a standard parabolic subgroup. In braid groups, a conjugate aAxa™?
corresponds to the image of C' under the action of «.

We can define an analogous flag simplicial complex for Artin groups, mimicking
the curve complex. In this complex, two irreducible parabolic subgroups P and @)
span an edge if one is contained in the other, or if their intersection is trivial and
pq = gp for all (p,q) € P x Q.

In spherical-type Artin groups, the Garside structure simplifies checking this
condition: it suffices to verify whether the elements zp and zg that generate the
centres of P and () commute [10].

Question 1.1 (M. Cumplido, V. Gebhardt, J. Gonzélez-Meneses, B. Wiest). For
which Artin groups is the complex of irreducible parabolic subgroups Gromouv-hyperbolic?

This question is only known for braid groups and three additional specific cases [6].
We can also define a Nielsen—Thurston-type classification based on whether ele-
ments preserve parabolic subgroups.

Question 1.2 (M. Cumplido, J. Gonzéalez-Meneses). Is there a notion of canon-
ical reduction system for a reducible element of an Artin group? If so, can it be
computed?

This question builds on more basic ones, such as the following:

Question 1.3 (folklore). Is the intersection of parabolic subgroups again a parabolic
subgroup?



This is known for spherical-type [10], certain 2-dimensional [11, 5], some FC-type
(30, 29, 1], and some Euclidean-type cases [21].

Question 1.4 (L. Paris, E. Godelle). Can the normalizer of a parabolic subgroup
be described?

This has been answered for spherical-type [33, 17], FC-type [18], 2-dimensional [19],
and some Euclidean-type groups [21].

Question 1.5 (M. Cumplido, J. Gonzédlez-Meneses). Is the intersection of all ir-
reducible maximal parabolic subgroups (with respect to inclusion) preserved by a re-
ducible element of an Artin group non-empty?

Question 1.6 (M. Cumplido, J. Gonzélez-Meneses). Does there exist a combina-
torial algorithm to determine whether an element of an Artin group is periodic,
reducible, or pseudo-Anosov?

Question 1.7 (M. Cumplido, J. Gonzédlez-Meneses). When cutting along the canon-
ical reduction system of a braid, we obtain a description of how the braid acts on
each part of the surface. How does this translate into the context of Artin groups?

2 (Pure) cactus groups

(Kazuhiro Ichihara? and Takatoshi Hama?® )

The cactus group, an analogue of the braid group, was introduced in [22], moti-
vated by the study of quantum groups.* More precisely, for any integer n > 2, the
cactus group of degree n, denoted by J,,, is defined by a presentation with generators
Spq for 1 < p < g <n and the following relations:

osi =eforalll <p<q<n,

® Sy uSmr = SmaSpq if [p,q] N [m,r] =0,
® SpgSmr = Spiq-r,prq-mSpq if [M,7] C [p,q],

where e denotes the identity element, and [p, q] denotes the set {p,p+ 1,...,q} of
integers for p < q.

As with the braid group, elements of the cactus group can be represented by
planar diagrams consisting of vertical strands. Examples of such diagrams for Jy
are shown in Figure 1.
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Figure 1: Diagrams for some elements of Jy

Owing to this diagrammatic representation, the cactus group J,, admits a natural
projection 7 : J, — S, onto the symmetric group S,, of degree n. The kernel of this
projection is called the pure cactus group of degree n, denoted by P.J,. For further
details, see [22, Subsection 3.1] or [15, Section 1].

It is shown in [15, Proposition 6.1] that the cactus group J, is not hyperbolic for
any n > 6. For small values of n, the hyperbolicity of J, is well understood:

o Jy=17/2Z,
e J; is virtually the infinite dihedral group which is isomorphic to Z/27Z x 7/ 2Z,
e J, is virtually a hyperbolic surface group,

and all of these are hyperbolic. (See, for instance, [15, 3].)
Thus, it is natural to consider the following question.

Question 2.1 ([15, Question 8.7]). Are the cactus group Js and the pure cactus
group PJs hyperbolic?

In [22, Theorem 9], Henriques and Kamnitzer showed that P.J, is isomorphic to
the fundamental group of the Deligne-Mumford compactification My ,,+1(R) of the
moduli space of real genus-zero curves with n 4+ 1 marked points. Therefore, the
following question is closely related to the geometric structure of My g(R), which is
known to be a non-orientable closed smooth 3-manifold.

Question 2.2 (K. Ichihara, T. Hama). Is the 3-manifold whose fundamental group
is isomorphic to PJs a hyperbolic 3-manifold?

On the other hand, since non-elementary (i.e., infinite and not virtually cyclic)
hyperbolic groups have always exponential growth rate [16], the following question
also arises naturally in connection with the above question.



Problem 2.3 (K. Ichihara, T. Hama). Determine the growth rate of the cactus
group, in particular Js.

It is also known that, for any finitely generated hyperbolic group, the generating
function encoding its growth function is rational (see, for instance, [16]). This leads
to another natural question:

Question 2.4 (K. Ichihara, T. Hama). Can we describe the generating function
that represents the growth function of the cactus group Js?

3 Extension of skein modules to TQFTs, and skein modules
of mapping tori

(Patrick Kinnear)

The skein module Sk(M) of a 3-manifold M is the Q(g'/?)-vector space spanned
by isotopy classes of framed links in M, subject to the Kauffman bracket skein
relations.

In [27], the following was shown.

Theorem ([27]). Let v € MCG(T?) = SLy(Z). Write ~ for the relation of conju-
gacy in SLo(Z), T for the generator corresponding to a Dehn twist, and M., for the
mapping torus of v. Then for |tr(y)| < 2,

6 [tr(7)[ =0
. 4yl =1
dlmQ(q1/2)Sk(M,y) = 9 X I o~ T%

64k o~ T2
and for |tr(v)| > 2 we have
dimQ(quz)Sk(MW) = |tI‘("y)| —+ 2p+1

where p is the number of {d(v),tr(y)} which are even, with d(v) the GCD of the
entries of Iy — 7.

Here are some problems related to this result.
Skein TQFT in (3+1)-dimension

Theorem leads to the following.

Corollary. There does not exist a symmetric monoidal functor
Bordy) 5) — Vect

sending a 3-manifold to its skein module.



We recall that Bord(} 5) is the category of 3-manifolds and 4-dimensional bordisms
between them, and such functors are called (34 1)-dimensional TQFTs. The ar-
gument, due to R. Detcherry, is given in [27, Remark 1.6]. Essentially, a TQFT
would allow us to calculate traces of mapping class group actions on 3-manifolds,
and in particular the dimensions of Theorem will appear as traces of the mapping
class group of the 3-torus. The mapping class group of a 3-manifold acts in a nat-
ural way on the skein module. But in the case of the 3-torus this action is already
well-understood due to work of Carrega [7], and the dimensions of Theorem do not
appear as traces.

Question 3.1 (P. Kinnear). On which 4-bordisms can skein theory be extended to
a (3+1)-dimensional TQFT with the natural mapping class group action?

That is, we are looking for a symmetric monoidal sub-category B of Bord?i?)) on
which we can define a symmmetric monoidal functor B — Vect. Ideally we should
find a B with the same objects as Bord(; 5 but different morphisms.

Higher genus mapping tori

It would be interesting to understand skein modules of mapping tori of higher genus
surfaces. To prove Theorem, we used the following work of [20], who investigated
G-skein algebras for G = SLy (the case above) as well as G = SLy, GLy.

Lemma ([20, Cor. 1.7]). Let the quantum parameter be generic. Let M be an
oriented 3-manifold and fix T?> C M. Then the SLy-skein module is spanned by
skeins intersecting T? at most N —1 times. The GLyx-skein module is spanned by
skeins not intersecting T?.

We therefore pose:

Question 3.2 (P. Kinnear). Can a similar result to Lemma be obtained for surfaces
of higher genus?

The idea of the proof is to define algebras SkAlg ,, of tangles in a thickened torus,
modulo skein relations, together with a surjection ¢ : HS — SkAlg,, where HY
is a (possibly modified) version of the Double Affine Hecke Algebra (DAHA). The
result then follows by identifying an idempotent e € H such that HSeHY = HC,
and such that ¢(e) is a tangle meeting a horizontal torus in T? x [0,1] at n — N
points (for SLy) or zero points (for GLy). The case of SLy admits a diagrammatic
proof, while the proof for other groups is in terms of representation theory.

The DAHA is closely related to the topology of T2. Its spherical subalgebra
eHe is isomorphic to the skein algebra of T? [20, Thm. 1.13]. There is a proposal
for a “genus 2 spherical DAHA” and a result relating it to the skein algebra [2,
9]. Answering Question 3.2 using a similar strategy to [20] will involve finding an
appropriate higher genus Hecke algebra (some proposals exist in [14, 24, 2, 23]),
understanding its relationship to skein theory and understanding its representation
theory.

Answering Question 3.2 would allow us to approach:



Problem 3.3 (P. Kinnear). Give a version of Theorem for mapping tori of surfaces
of higher genus.

4 Finite generating set giving the minimal growth rate

(Koji Fujiwara)

Let G be a finitely generated group, and S a finite generating set. Let S™ be the
set of elements in G which are obtained as products of at most n elements, or their
inverses, in S. The growth rate of (G, S) is defined by e(G, S) = lim, |S"|*/". The
minimal growth rate of G is defined by e(G) = infge(G, S), where the infimum is
taken over all finite generating sets S of G'. Let X, be the closed orientable surface
of genus g > 2. It is known that e(m;(X,)) is achieved by some S, but it is unknown
which S attains the infimum.

Problem 4.1 (K. Fujiwara). Find such S for each ¥,.

5 Knitted surfaces and their chart description

(Inasa Nakamura®)

Knitted surfaces are surfaces properly embedded in D? x B2, defined by using
“pairings” and “knit structure” [31]. We say that two knitted surfaces are equivalent
if they are related by an “isotopy of knitted surfaces”. Knitted surfaces can also
be given by using deformations of knits. A knitted surface is a generalization of
a simple braided surface [8, 25], and a knitted surface has a graphical description
called a chart description, which is a generalization of a chart description of a simple
braided surface.

Problem 5.1 (I. Nakamura). Determine a set of chart moves for knitted surfaces,
which generates all chart moves. We expect that the set is formed by the moves given

in [31].

Problem 5.2 (I. Nakamura). Classify the equivalence classes of charts of knitted
surfaces under chart move equivalence, in terms of the numbers of vertices of charts.

Any surface-link, which may be unrientable, is equivalent to the closure of a
certain knitted surface [31, 32].

Problem 5.3 (I. Nakamura). Calculate quandle cocycle invariants, the link/knot
group, or other knot invariants of a surface-link by using the chart description of its
associated knitted surface.

Problem 5.4 (I. Nakamura). Construct a family of an infinite number of surface-
links by using knitted surfaces, each of which is distinguished by some invariants
associated with the knitted surface.
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6 Plat presentations for surface-links

(Jumpei Yasuda)

A surface-link is an (unoriented) closed surface smoothly embedded in R*. A
2-knot is a surface-link that is homeomorphic to S?. A braided surface [34] is a
compact surface embedded in D? x B? that is a branched covering surface over B2,
and a 2-dimensional braid [25] is a special kind of braided surface. In [37], the plat
closure method was introduced to construct a surface-link from a braided surface.
If the plat closure of a braided surface is isotopic to a surface-link F', it is called a
plat presentation of I'. Every surface-link can be represented by a plat presentation
using a braided surface.

Let e(F') be the normal Euler number of a surface-link F. The plat closure of a
2-dimensional braid is a surface-link each of whose component F' satisfies e(F') = 0.
However, the converse remains open:

Question 6.1 (J. Yasuda). Is every surface-link, each of whose component F sat-
isfies e(F') = 0, equivalent to the plat closure of a 2-dimensional braid?

The plat index of a surface-link F', denoted by Plat(F'), is defined as the half
of the minimum degree of braided surfaces whose plat closures are isotopic to F.
This is a generalization of the bridge number b(L) of a link L. It is known that
surface-links with the plat index one are trivial.

It is known that the bridge number is additive for the connected sum of knots
[36]: for two knots K and Ks, we have b(K15K,) = b(K;) + b(K2) — 1. The plat
index satisfies the following inequality for surface-links F} and Fj:

Plat(F1§Fy) < Plat(F)) + Plat(Fy) — 1.

In [28, 35], it was shown that the connected sum of a 3-twist-spun of a knot [38]
and a trivial non-orientable surface-knot P of genus 3 with e(P) = £2 is isotopic
to P itself. This implies that the inequality above is strict in this case. A similar
result is known for the braid index [25]: it is not additive for the connected sum of
non-trivial 2-knots [26].

Question 6.2 (J. Yasuda). Is the plat index additive for the connected sum of 2-
knots (or orientable surface-knots)?

Let F' be a 2-twist-spun 2-knot of a twist knot. Then Plat(F') = 2.

Question 6.3 (J. Yasuda). Is the plat index of a 2-twist-spun 2-knot of a 2-bridge
knot equal to two?
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