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ABSTRACT. It is well known that there is an averaged mapping as one of useful
nonlinear mappings for many iterative algorithms. In a Hilbert space we can
obtain a theorem that an averaged mapping is determined by some inequality,
since we can use the important tool of relation between a norm and an inner
product. However, this determinism can not have a power in Banach spaces.
In this paper, we introduce a generalized extension of an averaged mapping
determined in a Hilbert space to Banach spaces.

1. AN AVERAGED MAPPING AND ITS PROPERTIES

At first we give an introduction of an averaged mapping defined in a Hilbert
space.

Definition 1.1. Let H be a Hilbert space, and let (-,-) be an inner product, and
let ||-|| be a norm on H. Let T be a mapping from H to H. T is called an averaged
mapping if there exists « € [0, 1] and a nonexpansive mapping N : H — H such
that

T=(1-a)l+aN,

where [ is an identity mapping. More explicitly, T is called an a-averaged mapping,
or an averaged mapping with a.

We obtained some properties of averaged mappings in a Hilbert space as follows([1]).

Proposition 1.1. In a Hilbert space H, the following hold:

(a) A mapping T : H — H s firmly nonexpansive if and only if

T isa (%)-averged mapping.

(b) Let Ty and Ty be firmly nonexpansive on H. Then, ToT is (%)-averaged.

(¢) Let T; be a;-averaged for every i € I = {1,2,3,-,-,m}. Then, Tp,Tr—1 - -ToTy
is a-averaged with

Sl
1+ e (325)

In a Hilbert space, we obtain the following theorem by using a good relation
between a norm and an inner product (cf. [1]).
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Theorem 1.1. Let T : H — H, and suppose a € (0,1). Then (a) and (b) are
equivalence.
(a) T is an a-averaged mapping.
(b) T satisfies the following inequality (1) for all z,y € E
2 2 d-a 2
(1) 1Tz = Tyll” < llz = ylI” = (=) I = D)z — (I = Tyl

2. BREGMAN DISTANCE IN BANACH SPACES

We also introduce Bregman distance defined in Banach spaces (cf. [6]).

Definition 2.1. Let E be a Banach space. Let f : E — R a Gateaux differentiable
and convex function and f’(x) stands for the derivative of f at z € E.
Then, Bregman distance Dy is defined and denoted as follows:

Dy(z,y) = f(z) = f(y) — (@ —y, ['(¥)),
for all z,y € E, where (-,-) stands for the duality pair
Moreover, we give a definition of V (-, -), as a special version of Bregman distance
with f = [|]|%.
Definition 2.2. Let E be a smooth Banach space with a norm ||-|. We denote a
function V on a F x E as follows:
V(z,y) = ll2l* + lly]* - 2 (2, Jy)

for all x,y € E, where (-,-) stands for the duality pair and J is the normalized
duality mapping, i.e.

* * * 2 *
Jr=A{z* € E* : (w,2") = [lz[|”, |l="| = ]}

It is well known that the value of the normalized duality mapping J is singleton
in a smooth Banach space. It is trivial V(x,y) > 0 for all z,y € E. In a Hilbert
space H, as a special case of a Banach space, it is shown that V(z,y) = ||z — y||*
for all z,y € H.

Lemma 2.1. (¢f.[10]) The V has the following properties.
(i) For all z,y,z € E,

2(x —y,Jy — Jz) < V(z,y)+ V(z,2).

(73) If a sequence {x,} C E satisfies limy,_,oo V(zp,p) < 00 for some p € E, then
{z,} is bounded.

(ii7) Let E be a smooth and uniformly convexr Banach space. There exists a contin-
uous, strictly increasing and convex function g : [0,00) — [0,00) such that g(0) =0
and for each real real number v >0 and all z,y € {z € E : ||z|| < r}

0 <g(llz—yll) <V(z,y).

Remark 1. This V (-, -) does not mean a distance, since the so-called triangle inequal-
ity is not satisfied. In a smooth and uniformly convex Banach spaces, V(z,y) =0
implies = y by the above lemma 2.1 (ii3).



3. A NONLINEAR MAPPING DETERMINED BY BREGMAN DISTANCE V

We introduce a definition of a special mapping in Banach spaces and named
V-strongly nonexpansive mapping as follows ([10]):

Definition 3.1. Let E be a smooth Banach space. A mapping T : E — F is said
to be V-strongly nonexpansive if there exists a constant A > 0 such that

(2) V(T Ty) <V(z,y) = AV(UI =Tz, (I = T)y),

for all z,y € E. More explicitly, T is called a V-strongly nonexpansive mapping
with A.

For the sake of showing the relation among other nonlinear mappings, we give
definitions of them in a Banach space E and a Hilbert space H.

Definition 3.2. (1) T : E — F is said to be firmly nonexpansive if
T2 = Tyl|* < (x —y, J(Tx — Ty))

for all z,y € E.
(2) T : H — H is said to be S-inverse strongly monotone if

BTa —Ty|* < (¢ —y, Tz — Ty)

for all x,y € H.
(3) T : H — H is said to be strongly nonexpansive if T' is nonexpansive with some
fixed point and if it holds that

(xn _yn) - (T'T_Ty) —0

for sequences {x, } and {y, } such that {x,,—y,} is bounded and lim,, oo (||, — Yn|—
[Tzn — Tyall) = 0.

We give a proposition with respect to the relation among the above nonlinear
mappings.

Proposition 3.1. ([10]) In a Hilbert space,

(a) A firmly nonexpansive mapping is V -strongly nonexpansive with A = 1.

(b) If T is a B-inverse strongly monotone mapping for some 3 > %, then (I-T) is
V -strongly nonexpansive with A = (28 — 1).

(c) A V-strongly nonexpansive mapping with a nonempty subset of asymptotically
fixed points is strongly nonexrpansive.

Proposition 3.2. ([10], [12]) In smooth Banach spaces,

(a) For any c € (—1,1), cl is V-strongly nonezpansive with any A € (0, 1££).
Especially, for c =1, I is V-strongly nonexpansive with any A > 0.

(b) If T is V -strongly nonexpansive with A > 0, then for any o € [—1, 1] with o # 0,
aT is V-strongly nonexpansive with a?\.

(¢) If T is V-strongly nonexpansive with A > 1, then (I —T) is also V-strongly
nonexpansive with \~1.

(d) Suppose that T is V-strongly nonexpansive with A > 0, and that o € [—1,1]
satisfies a®’\ > 1. Let T, = (I — oT). Then T, is V-strongly nonexpansive with
(a?X\)~t. Moreover,

V(Tox, Toy) < V(z,y) — X'V (Tz, Ty).
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Remark 2. The V-strongly nonexpansive mapping is not neccesarily nonexpansive.
We have an example of a V-strongly nonexpansive mapping which has a nonempty
subset of fixed points and which is not even quasi-nonexpansive in some Banach
space ([12]).

4. COMPARISON BETWEEN THE AVERAGED MAPPING AND THE V-STRONGLY
NONEXPANSIVE MAPPING IN BANACH SPACES

We recall Theorem 1.1 that a mapping 7" is a-averaged mapping if and only if
T satisfies the following inequality for all z,y € E

2 2 1 -«
[Tz —Ty||” < |lz—ylI” —(

) =T)z — (I -Thy|*,
where o € (0,1). Exchanging 1= for A, we get
1Tz = Ty|” < llz = ylI* = A = T)ae — (I =Tyl

as X > 0. In a Hilbert space, this means that 7" is an averaged mapping if and
only if T is a V-strongly nonexpansive mapping, since the following correspondanse
holds:
A 11—« 1
I — o= il

In a Banach space, we could also give a definition of an averaged mapping as the
same as one in a Hilbert space;
Definition 4.1. Let E be a Banach space with a norm |[-||. Let T" be a mapping

from E to E. T is called an averaged mapping if there exists o € (0,1) and a
nonexpansive mapping N : F — FE such that
T=(1-a)l+aN.
Then T is a nonexpansive mapping since
|72 — Tyl = (1 - )z + aNz — (1 - a)y — aNy|

= (1 - @)@ — y) + a(Nz - Ny)|

<(1—a)llz -yl +al[Nz - Ny||

<A -a)llz -yl +allz -yl = llz -yl

This definition means that an averaged mapping is a nonexpansive mapping in
an arbitrary Banach space. However, with respect to a V-strongly nonexpansive
mapping, we have obtained an example of V-strongly nonexpansive mappings which
has a nonempty set of fixed points and which is not even quasi nonexpansive in a
Banach space [P with p =3 (see [12]).

The properties of averaged mappings are useful for the convergence theorems
for fixed points with an iterative scheme, especially in a Hilbert space. However
in Banach spaces, instead of of those V-strongly nonexpansive mappings ought to
play important role.

At last we should introduce a theorem with respect to this nonlinear mapping
in a Banach space.



Theorem 4.1. ([10]) Let E be a reflexive, smooth and strictly conver Banach
space. Let C' be a nonempty, closed, and convex subset of E, and Rc : E — C
sunny and generalized nonexpansive retraction. Let B : E* — 2F be a mazimal
monotone operator and let J, = (I +r,BJ)~1 be a generalized resolvent of B for
a sequence {ry}, where the duality mapping J of E is weakly sequential continuous,
and {r,} C (0,00). Suppose A: C — E is a V strongly nonexpansive mapping with
A > 1 such that Co = A=t N (BJ)~1(0) # 0. For an « € [—1,1] such that o®X\ > 1,
let a sequence {x,} C C be defined as follows: For any x = x1 € C and every
n €N,

Yn = Ro(I — aA)xy,
Tp41 = RC(ﬁnx + (1 - ﬁn)Jrnyn)7
where {B8,} C [0,1] and {r,}(0,00) satisfy that

Zﬁn < oo, liminfr, > 0.
n—r 00

n>1
Then there exists an element u € Cy such that
T = u, Rey(Tn) — u.
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