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1. FIXED POINT THEOREMS IN METRIC SPACES: TYPE 1 [5]

Let (X, d) be a metric space. A mapping T from X into itself is said to be widely
more generalized hybrid if there exist real numbers «, 3,7, 0, and ¢ such that
ad(Tz, Ty)? 4 Bd(z, Ty)? + vd(Tz,y)? + dd(z,y)?
ted(x, Tx)* 4 Cd(y, Ty)?
<0

for any x,y € X. Such a mapping is called an («, 8,7, d, £, {)-widely more general-
ized hybrid mapping.

Lemma 1.1. Let (X,d) be a metric space, let T be an («, 8,7, 0, €, )-widely more
generalized hybrid mapping from X into itself, and A € [0,1] Then T is an (a, (1 —
AP+ A AB + (1= N)v,0,(1 — Ne + A, Ae + (1 — A)¢)-widely more generalized
hybrid mapping from X into itself.

Lemma 1.2. Let X be a metric space and let T be an (o, 8,7, 6, €, ()-widely more

generalized hybrid mapping from X into itself. Suppose that there exists A € [0, 1]
such that

(1) a+ (1 —=Xe+ A+ 2min{A8 + (1 — A\)y,0} > 0;
(2) a+d+e+¢+4min{Ag+ (1 —A)vy,0} > 0.
Then {T"™z | n € NU{0}} is a Cauchy sequence for any x € X.

By Lemma lemma:Cauchy-m we obtain directly the following theorem.

Theorem 1.1. Let X be a complete metric space and let T be an («, 8,7, 90,¢,()-
widely more generalized hybrid mapping from X into itself. Suppose that there exists
A €10,1] such that

(1) a+ (1—=XNe+ A +2min{A\38+ (1 —A)v,0} > 0;

(2) a+d+e+ ¢+ 4min{Ag+ (1 —A)y,0} > 0.

Then for any x € X there exists lim, oo T"x.

By Theorem 1.1, we obtain the following theorem.

Theorem 1.2. Let X be a complete metric space and let T be an («, 8,7, 90,¢,¢)-
widely more generalized hybrid mapping from X into itself. Suppose that therre
exists A € [0,1] such that

(1) a+ (1 —=XNe+ A+ 2min{A58+ (1 — X\)v,0} > 0;

(2) a+d+e+¢+4min{A8+ (1 —N)v,0} > 0;

B a+(@=NE+O+Ay+e)>0.
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Then T has a fived point u, where u = lim,_,oo T"x for any x € X. Additionally,
ifa+pB+~v+0>0, then T has a unique fixed point.

Proof. By Theorem 1.1 there exists u € X such that v = lim,,_,,, T"z. Replacing
x and y by T™x and u, respectively, we obtain
ad(T™ o, Tu)? + (1 — N)B + A\y)d(T"x, Tu)?
+(AB+ (1 = NNd(T" 1z, u)? + 5d(T"x, u)?
+((1 = Ne+XO)d(T"x, T" M 2) + (Ae + (1 — N\))d(u, Tu)?
<0.
Since u = lim,,_, o, T™x, we obtain
(a4 (1 =N (B+C) + Ay +e))d(u, Tu)* < 0.
Since a + (1 = A)(B+ ) + A(y +¢) > 0, we obtain d(u,Tu)? < 0 and hence u is a
fixed point of T

Furthermore, suppose that a + 8+ v+ > 0 holds. Let w and v be fixed points
of T'. Then we obtain

ad(Tu, Tv)? + Bd(u, Tv)? + vd(Tu,v)* + dd(u,v)?
+ed(u, Tu)* + Cd(v, Tv)?
= (a+ B+~ +8)d(u,v)* <O0.
Since o+ 8+ v + d > 0, we obtain d(u,v)? < 0 and hence u = v. O

2. FIXED POINT THEOREMS IN METRIC SPACES: TYPE 2 [7]

Lemma 2.1. Let (X,d) be a metric space and let T be an (a, 8,7, 9, £, ()-widely
more generalized hybrid mapping from X into itself. Suppose that therre exists
A €10,1] such that

(1) a+ (1 —=Xe+ A+ 2min{A5 + (1 — X)v,0} > 0.
Then
d(T?z, Tz) < VAd(Tz,x)
holds for any x € X, where
C 0+ Ae+ (1 - N+ 2min{A3 + (1 — N)y,0} }
a+ (1=XNe+ A +2min{A\3+ (1 —-\)v,0}" |~
Lemma 2.2. Let (X,d) be a metric space and let T be an (o, 8,7, 9, ¢, ()-widely

more generalized hybrid mapping from X into itself. Suppose that therre exists
A € [0,1] such that

(1) a+ (1 =XNe+ A+ 2min{A8+ (1 — A\)v,0} > 0;

(2) a+ 2min{Ag + (1 — A)y,0} > 0.

Then

Azmax{

d(T3z,Tx) < VBd(Tz, x)
holds for any x € X, where
_ (I —=Xe+ X 5
B = max{max{ a+2min{Ag + (1 — )\)’y,O}’O A
(1 —=X)8+ Ay +2min{4,0}
a+2min{A3 + (1 — A\)v,0}’

—|—Inax{—
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e + (1 = X)¢ +2min{A3 + (1 — A)v,0} + 2min{J, 0} 0
a+2min{A3 + (1 — A)v,0} T
Lemma 2.3. Let (X,d) be a metric space and let T be an («, 58,7, 9,¢,()-widely

more generalized hybrid mapping from X into itself. Suppose that therre exists
A € [0,1] such that

(1) a+ (1 —Xe+ A+ 2min{A8 + (1 — \)7y,0} > 0;
(2) a+2min{Ag + (1 — A)y,0} > 0.
Then
d(T3z,T%x) < VCd(Tz, )
holds for any x € C, where
A 1-A A 1—A
¢ = max{_a+ﬂ(1+—( NE +)7Ac’0}3+max{_i: (ii)ﬁiﬁ’o}“"

By Lemma 2.3, we obtain the following theorem.

Theorem 2.1. Let (X, d) be a complete metric space and let T be an («, 8,7, 9,¢€,()-
widely more generalized hybrid mapping from X into itself. Suppose that therre
exists A € [0,1] such that

(1) a+ (1 —=Xe+ A+ 2min{A8 + (1 — A)7y,0} > 0;

(2) a+2min{Ag + (1 — A)y,0} > 0;

(3) C<1.

Then T has a fixed point u, where u = lim,_,, T"x for any x € X. Additionally,
ifa+B+~v+6>0, then T has a unique fixed point.

Proof. By Lemma 2.3, we obtain
AT e, Trx) < VCd(T" 'z, T %)
Since 0 < C' < 1, we obtain
d(T"z, T"z)
m—1
<> AT, THx)
k=n
m—1 . m—1 1
Cid(Tz,x)+ »  C+d(T%,Tx)
k=n,k:even k=n,k:odd

(]

dTz,z)+ Y. CFd(T%,Tx)

A
g
S

k=n,k:even k=n,k:odd
= Y CRd(Twz,x)+ C3d(T%x, Tx)
k=[] k=(%]
P ld(Ta, 2) + 2 Eld(T2, Ta)
1-VC

for any m,n € N with m > n. Therefore {T"z | n € NU {0}} is Cauchy. Since
X is complete, there exists u = lim,,—,o, T"x. Replacing = and y by v and T"z,
respectively, we obtain

ad(Tu, T" M 2)? + (1 — N)B + M)d(u, T z)?
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+(AB+ (1 = \d(Tu, T™2)? + dd(u, T™z)?
(1= Ne £ AQd(w, Tu)? + (e + (1 — NQd(T", T
<0.
Putting n — oo, we obtain
(a+AB+)+ 1= A)(y+e)d(Tu,u)* < 0.
Since
a+AB+)+ (L= +e)
> a4+ (1= Ne+ A+ min{A3 + (1 — \)v,0}
> —min{AS + (1 — )7, 0}
>0,
u is a fixed point.
Furthermore, suppose that a + 8+ 4+ > 0 holds. Let u and v be fixed points
of T'. Then we obtain
ad(Tu, Tv)? 4 Bd(u, Tv)? 4+ vd(Tu,v)* + dd(u, v)?
ted(u, Tu)? + ¢d(v, Tv)?
= (a4 B+7v+0d(u,v)? <O0.
Since a + 8+ + 6 > 0, we obtain d(u,v)? <0 and hence u = v. O

3. REGARDING PARAMETER CONDITIONS

In this section, we consider families of mappings determined by parameter con-
ditions in the case of metric spaces.
Let

T(a. B.7,6,1,¢)

Vr,y € X,

ad(Tz, Ty)? + Bd(z, Ty)? + vd(Tz, y)*
+0d(z,y)? + ed(z, Tx)? + ¢d(y, Ty)*
<0

If (a, B,7,6,m,¢) € [0,00)¢\ {(0,0,0,0,0,0)}, then T (e, 3,7, 6,m,¢) = 0 clearly.

If (cr, 3,7, 6,1,¢) € (—00,0]8, then T (v, 8,7, §,n, ¢) contains all mappings clearly.

a+B8+7+0<0 < T(a,8,7,9,n,() contains the identity mapping.

Iff+e<0,7v+¢<0,and § <0, then: let Tz = ¢ (where ¢ is a constant).
Since

e )r.x X

ad(Tx, Ty)? 4 Bd(z, Ty)? + vd(Tx,y)* + dd(x, y)*
ted(x, Tx)* + Cd(y, Ty)?
= (B+e)d(z,¢)* + (v + Q)dly, ¢)* + dd(x,y)”
<0,
Therefore, T is included in T («, 8,7, 8,1, ().
Other than the above, we would like to find conditions under which T («, 3,7, 9,7, ()

will not be empty.
Program Results

(04757%5»7770 € [_555]6 (Step size: 1)
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(Oé, 67 s 57 n, C) ¢ (—OO, 0]6 U [07 00)6
a+B8+y+0>0
B+e>0,vy+(>0,0rd>0
Total number of parameter combinations: 750,987.
Search only for mappings like the following:
X =1[0,1] (step size: 0.1)
Tx = a+ bx: if the value exceeds the range, it folds up or down to fit within the
range. (a € [0,1], b € [—5, 5], step size: 0.1).
Let

Ti(e, B,7.6,1,¢)

ot T:x—a+bx
= folds up or down
if necessary

Va € [0,1],Vb € [-5,5],Vz,Vy € X,
ad(Tx, Ty)? + fd(z, Ty)? + vd(Tz, y)?
+dd(x,y)? + ed(x, Tx)? + Cd(y, Ty)?
<0

Total number of parameter combinations such that 71 («, 8,7, 0,7, ¢) # () holds:
75,860.
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