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1 Introduction

An optimization problem including dc functions (difference of two convex functions) is called
dc programming. Dc programming is one of the important subjects in global optimization
and has been studied by Rosen [8], Avriel and Williams [1], Meyer [7], Ueing [12], Hillestad
and Jacobsen [3], and Tuy [10]. It is known that many global optimization problems can be
transformed into or approximated by dc programming problems. For dc programming problems,
a necessary and sufficient optimality condition has been proposed by Hiriart [4].

The concept of vector-valued cone-dc function has been proposed by Hojo, Tanaka and Ya-
mada [5]. Moreover, several properties of cone-dc function have been analysed by Yamada,
Tanaka and Tanino [13]. In particular, it has been shown that every locally vector-valued cone-
dc function having a compact convex domain can be rewritten as a vector-valued cone-dc function
with the same domain. From such results, we notice that many vector optimization problems can
be transformed into or approximated by vector-valued cone-dc vector optimization problems.

In this paper, we propose necessary and sufficient optimality conditions for three types of
solutions of an unconstrained vector-valued cone-dc vector optimization problem by applying
Hiriart’s optimality condition in the case where the ordering cone is obtained as a convex poly-
hedral cone. By utilizing a penalty function method, the proposed optimality conditions adapt
to a constrained vector-valued cone-dc vector optimization problem. Moreover, we define a dual
problem for a cone-dc vector optimization problem. Furthermore, we propose an algorithm for
finding a weakly efficient point of a cone-dc vector optimization problem.

The organization of this paper is as follows: In Section 2, we introduce some notation and
mathematical preliminaries in convex analysis. In Section 3, we introduce some properties of
real-valued dc functions. In Section 4, we introduce some properties of vector-valued cone-dc
functions. In Section 5, we propose optimality conditions for a cone-dc vector optimization
problem. In Section 6, we define a dual problem for a cone-dc¢ vector optimization problem
based on quasi-conjugation. In Section 7, we propose an algorithm for finding a weakly efficient
point of a cone-dc vector optimization problem.
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2 Mathematical Preliminaries

Throughout this paper, we use the following notation: R denotes the set of all real numbers. For
a natural number m, R™ denotes an m-dimensional Euclidean space. The origin of R™ is denoted
by 0,,. Let R := {x € R™: x> 0,,}. Given a vector x € R™, x " denotes the transposed vector
of . For a subset X C R™, int X denotes the interior of X. Given a nonempty cone D C R™,
DT denotes the positive polar cone of D, that is, DT := {u € R™ : u'x > 0, for all z € D}.
Given a real-valued function o : R™ — R U {+o0} and a positive real number ¢, 0.a(y) denotes
the e-subdifferential of a at y, that is,

O.a(y) :={a €R™:a'(x —y)+ a(y) — e < a(z) for all x € R™}.

3 Properties of real-valued dc function

In this section, we introduce some properties of real-valued dc function

Definition 3.1 (Real-valued dc function) Let X be a nonempty convex subset on R”™. A

function @ : X — R is said to be dc on X if there exist two real-valued convex functions
B,v : X — R such that

alx) = p(x) —y(x) foral e X. (1)

The representation (1) is called a dc decomposition of & on X. When X = R™, F is simply
called a dc function and the representation (1) is simply called a dc decomposition.

Proposition 3.2 (See, e.g., Tuy [11], Proposition 2.4) Let X C R™ be a nonempty convex
subset and let ' be a real-valued function on X. If for every @ € X there exists a convex open
neighborhood M, of x such that F is convexr on M, N X, then F' is convex on X.

Theorem 3.3 (See, e.g., Hartman [2]) Let X C R™ be nonempty and convez. A real-valued
function F': X — R is dc on X if and only if F' is locally dc on X.

The mathematical programming problem where the objective function and all constraint
functions are given by dc functions is called a dc programming problem. From Theorem 3.3, the
following statements hold.

[. Every continuously twice differentiable function is dc.

IT. Every continuous function on a compact convex set can be formulated as the limit of a
sequence of dc functions.

From the above statements, we note that many global optimization problems can be transformed
into or approximated by dc programming problems.

For real-valued dc programming problems, an optimal condition is obtained by the following
proposition.

Proposition 3.4 (See Hiriart [4]) Let § : R™ — R U {400} be an arbitrary function and
v :R™ = RU{+00} a convex proper l.s.c function. A point € (dom ) N (dom 7) is a global
minimizer of B(x) — v(x) of R™ if and only if

0.v(x) C 9.(x) for each € > 0.



4 Properties of vector-valued cone-dc function

Let C C R™ be a convex polyhedral cone defined as
C = {mER”: (ci)TchO, izl,...,l}.

We assume that int C' # () and that dim{c!,..., ¢!} = n. Then, we note that C' is pointed.
Now, we define the order <g as follows:

r<cyify—xelforx,yecR"
Moreover, we review the following concept for vector-valued functions.

Definition 4.1 (C-convexity, see, e.g., Luc [6], Definition 6.1) Let X C R™ be nonempty and
convex. A vector-valued function g : X — R" is said to be C-convez on X if for each !, x? € X
and 0 < X\ <1, g satisfies that

g((1 = Nz' + \z?) <¢ (1 — Ng(z') + Mg(z?).

Proposition 4.2 (See, e.g., Luc [6], Proposition 6.2) Let X C R™ be a nonempty convex subset.
Then, a vector-valued function g : X — R"™ is C-convex on X if and only if c"g(-) is a real-
valued convex function on X for each ¢ € CT.

Proposition 4.3 (See, e.g., Lucc [6], Proposition 6.7) Let X C R™ be a nonempty convex
subset and let vector-valued functions g,h : X — R" be C-convexr on X. Then, the following
assertions hold.

(i) pg is C-conver on X for each p € R (1> 0).
(ii) g+ h is C-conver on X.

From Propositions 3.2, 4.2 and 4.3, the following proposition holds.

Proposition 4.4 Let X C R™ be a nonempty convexr subset and let a vector valued function
g: X = R" be locally C-convex on X. Then, g is C'-convex on X.

Definition 4.5 (C-dc function, see Hojo, Tanaka and Yamada [5]) Let X C R™ be nonempty
and convex. A vector-valued function f : X — R” is said to be C-dc on X if there exist two
C-convex functions g and h on X such that

f(x) = g(x) - h(z) (2)
for all @ € X. Moreover, formulation (2) is called C-dc decomposition of f over X.

The following theorem is straightforwardly satisfied from Definition 4.5.

Theorem 4.6 Let X C R™ be a convex subset satisfying int X # (. If a vector-valued function
f: X —=>R"isC-dc on X, then f is locally C-dc on X.

Theorem 4.7 (Yamada, Tanaka and Tanino [13]) Let X C R™ be a convex subset and S a
compact convex subset satisfyingint X O S andint S # (. If a vector-valued function f : X — R"
1s locally C-dec on X, then f is C-dc on S.



Theorem 4.8 (Yamada, Tanaka and Tanino [13]) Let X C R™ be a convexr subset, S C
int X a compact convexr subset satisfying int S # O, f: X — R", and let f; : X — R (i =
L,...,m) satisfy f(x) = [fi(z),..., ful@)]". If every f; (i = 1,...,n) is continuously twice
differentiable on X, then f is C'-dc on S.

Theorem 4.9 (Yamada, Tanaka and Tanino [13]) Let X C R™ be a convexr subset and
S a compact convexr subset satisfying int X D S and int S # 0. If a vector-valued function
flx)=[filx),.... fo(®)]" (fi: Y =R, i=1,...,n) is continuous on X, then f is the limit of
a sequence of C'-dc functions on S which converges uniformly in S.

From Theorems 4.8 and 4.9, we notice that many vector optimization problems can be trans-
formed into or approximated by C-dc vector optimization problems.

5 Optimality conditions for a cone-dc vector optimization
problem

Let us consider the following vector optimization problem.

C-min f(x) = g(x) — h(x)
(C-DC) { subject to = € X ::g {x e R™: p(x) < 0}

where g, h : R™ — R™ are vector-valued C-convex functions, p : R™ — R is a convex function
and C- min denotes minimizing with respect to the ordering cone C' C R™. For problem (C-DC),
we assume the following conditions.

Assumptions:

(A1) X is a compact convex set.
(A2) p(0) <0

By utilizing a penalty function methd, problem (C-DC) can be transformed into the following
problem.

== | C-min f(x) := g(x) — h(x)
(€-DC) { subject to x € R™,

where g(x) := g(x) + 7 max{0, p(x)}v, v € int C, 7 is a positive real number satisfying
argmin{c' g(x) : x € R} C X
for each ¢ € C*\{0,,}.

Definition 5.1 (Efficiency, see Luc [6], Definition 2.1) Let X C R™ be nonempty and let
f X — R" be a vector-valued function. We say that

(i) y € X is an ideal efficient point of f over X with respect to C' if f(y) <¢ f(x) for all
e X.



(ii) y € X is an efficient point of f over X with respect to C'if f(x) <¢ f(y) for some & € X,
then /() <c f(z).

(ili) y € X is a weakly efficient point of f over X with respect to C'if f(x) <0, umt ¢ f(Y)
for some @ € X, then f(y) <(0,3uim ¢ f().

By applying Proposition 3.4 to (C-DC), we obtain the following theorems.

Theorem 5.2 A vector y € R™ is an ideal efficient point of (C-DC) if and only if
0 (c")T h(y) C 0. (ci)Tg(y) for each i € {1,...,l} and ¢ € R,.

Theorem 5.3 A vector y € R™ is an efficient point of (C-DC) if and only if y satisfies

~—~

ai)f(Tm—y)—ei }
(¢) (9(x) —g(v))

v

(l] U ){weRm:

Z;; at€de, (") Th(y

T
ﬂ U zcR™: (aj)'(Tzc—y)—gj =0
ai €8z () Th(y) > (C]) (9(x) —g(y))
J
for each j € {1,...,l} and e = (e1,...,8,)" € RT.
Theorem 5.4 A vector y € R™ is a weakly efficient point of (C-DC) if and only if y satisfies
l AT _ o
ﬂ U {weRm: (a)i(T:c y) e }:Q)
=1 aicd., ()T hy) > (') (9(z) — g(y))

for each e = (e1,...,e,)" €RTL.

6 Duality based on a quasi-conjugation

For each ¢ € CT\{0,,}, we consider the following problem:

maximize h.(x,a) = c h(z) — a
(MP(e)) { subject to (x,a) € S(e),

where S(c) := {(z, ) : ¢"g(x) — a < 0}.
From assumptions (A1) and (A2), without loss of generality, we can assume that (0,,,0) €
int S(¢) for each ¢ € ST\{0,}. Since h is C-convex, S(c) is a closed convex set.

Definition 6.1 (Quasi-conjugate function, Thach [9]) Let G : R" — R and let G : R" —
R be a function defined as follows:

o —sup{G(x) : x € R"} if u=0,,
G (u) := { —inf{G(x) :u'x > 1} if u#0,.

The function G¥ is called the quasi-conjugate function of G.
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For each ¢ € C*\{0,,}, we consider the following problem:

minimize  h.(u, 3)7
(DP(c)) { subject to  (u, 5) € R™\S(e)°.

Theorem 6.2 For each ¢ € C*\{0,,},
max(MP(¢)) = — min(DP(¢)).

Here, max(MP(c)) and min(DP(c)) denote the optimal values of (MP(c)) and (DP(c)), respec-
tively.

Theorem 6.3 A vector & € R™ a weakly efficient point of (C — DC) if and only if there exists
¢ € CT\{0,} such that

¢' (9(2) — h(z)) = min(DP(e)).

7 Optimization algorithm

In this section, we propose an algorithm to find a weakly efficient solution of (C-DC) in the case
where C' is a convex polyhedral cone.

Algorithm FES

Step 0: Select a tolerance v > 0. Choose an initial provisional solution y' € X. Construct
Tyi={zeR™"™ :(—p,....,—p,0)" <2< (p,....,p,Vm+1p+ )T} and the vertex set
V(T}) of Ty, where 6 > 0. Set k =1 and go to Step 1.

Step 1: If max{||v| : v € V(T})} < /np + d + 7, then stop; y* is an approximate point of an
efficient solution. Otherwise, go to Step 2.

Step 2: Choose v* € V(T},) satisfying ||v*|| = max{||v| : v € V(T})} and set T}, := TpN{z €
R™: (07)T (2 —v*) = (/np+0)?} and calculate V (T, 1). Set M =V (Tiy1)\V(Tk) and
go to Step 3.

Step 3: If M = 0, set y**!' = w, k + k + 1 and return to Step 1. Otherwise, choose
veMn{zeR"!:|z]| > p+d}, and w := y* and go to Step 4.

Step 4: For each i € {1,...,n}, calculate
w; = min{ (ci)T (g(x) — g(w)) — (V (ci)Tg('v)>T (x—v)—¢ xR}
where
g; = (c")T h(v) — (¢') h(w) — (V (ci)T g(’u))T (y —v).

If w; <0 foreachie {1,....n} and w; <0 for some j € {1,....n}, set

T

w € arg min{i:min (c")T (g(x) — g(w)) — (V (ci)T g('U))T (x—v)—¢ xR}

1,....n

Return to Step 3.

Theorem 7.1 Every accumulation point of {y*} generated by executing Algorithm FES is an
weakly efficient point of problem (C-DC).
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