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Abstract

This work studies a convex minimization problem with a fixed point con-
straint on Hadamard spaces. We propose a new method to generate an iterative
sequence with an anchor point and prove its strong convergence to the solution
closest to the anchor point.

1 Introduction

Let X be a metric space having a convexity structure and f: X — |—o00, 00| a convex
function. For a nonempty subset C' of X, we consider the problem to find a point
xo € C satisfying that
f(zo) = inf f(y).

This problem is called the convex minimization problem with a constraint set C', and
the solution is called a minimizer of f. The constraint set C' is given in various ways.
In this work, we will mainly focus on the case that C' is the set of fixed points of a
given mapping.

The following result shows the A-convergence of an iterative scheme to a solution
to a convex minimization problem with a fixed point constraint.

Theorem 1.1 (Kimura [5]). Let X be a Hadamard space such that a subset {z €
X | d(z,y) < d(z,x)} is convez for any x,y € X. Let f: X — |—o0,00] be a proper
lower semicontinuous convex function and T: X — X a nonexpansive mapping. Let
{A\n} C ]0,00[ be a positive real sequence such that inf,eny A, > 0. Suppose that
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argminy f NFixT # &. Generate a sequence {x,} C X as follows: ©1 € X, f1 = f,
and

Xn={z€X|dzTz,) <d(z,zn)},
fn—‘,—l - fn +an7

Tn+1 = R)\n+1fn+1xn
forn € N. Then {x,} is A-convergent to xy € argminy f NFixT.

In this work, we study a convex minimization problem with a fixed point constraint
on a Hadamard space and consider a technique similar to the result above to generate
an approximating sequence to the solution. We propose a new method to generate
an iterative sequence with an anchor point and prove its strong convergence to the
solution closest to the anchor point.

2 Preliminaries

Let X be a metric space with a metric d. A geodesic connecting two points x,y € X is
a mapping v, : [0,1] = X such that v;,(0) =z, 72y(1) =y, and d(Vgy(s), Yay(t)) =
|s — t|d(z,y) for s,t € [0,1]. If for every pair of points in X, there exists a geodesic
connecting them, we call X a geodesic space.

A Hadamard space is defined as a complete CAT(0) space. The definition of
CAT(0) space is usually stated using geodesic triangles and comparison triangles
on the geodesic space and its model space, respectively. In this work, we define it
by the equivalent condition described by a particular inequality as follows: We say a
geodesic space X is a CAT(0) space if the inequality

d(Yay (), 2)* < (1 = t)d(z, 2)* + td(y, 2)* — (1 — t)d(z,y)

holds for any x,y,z € X and ¢ € [0, 1].

A geodesic space X is said to be uniquely geodesic if for each pair of points x,y €
X, there is a unique geodesic v, connecting them. It is easy to see that every
CAT(0) space is uniquely geodesic. In this case, we can define a convex combination
(1-t)lxdty € X of x,y € X with a parameter ¢ € [0,1] by (1 — )z ® ty = 4y (2).
Moreover, we define a geodesic segment [z, y] between x and y by

[, 9] = 72y ([0, 1)) = {1 - )z &ty e X [0 <t < 1}.

Using this notion, we define the convexity of sets in a natural way; a subset C' of X
is said to be convex if [x,y] C C for any z,y € C.

For more details of Hadamard space, see [1, 2] for instance.

Let T: X — X be a mapping on a metric space X. We say T is nonexpansive if
d(Tx,Ty) < d(z,y) for any z,y € X. A point z € X is called a fixed point of T if it
satisfies z = T'z. The set of all fixed points of T' is denoted by FixT. We know that
Fix T is closed and convex if T' is nonexpansive.

Let f: X — |—00,00] be a function on a Hadamard space X. Then,
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e f is said to be proper if f(x) € R for some x € X;

e f issaid to be lower semincontinuous if f(z) < liminf, o, f(x,) for any x € X
and {z,} C X with z,, — x;

e f is said to be convex if f(tz @ (1 —t)y) < tf(x)+ (1 —t)(y) for any z,y € X
and ¢t €]0,1[.

We denote the set of all minimizers of f on X by argminy f.
For a subset C of X, we define the indicator function i¢c: X — |]—o00, 00] of C' by

() — 0 (ze0),
c(@) {oo (z ¢ C)

for x € X. It is easy to see that C' is nonempty, closed, and convex, if and only if i¢
is proper, lower semicontinuous, and convex, respectively.

If f is a proper lower semicontinuous convex function, then so is Af for A € |0, oo].
Moreover, for such A\f and z € X, there exists a unique minimizer y, € X of the
function Af + d(z,-)?/2. Using this point we define the resolvent Rys: X — X of Af
by

1
Rysx =y, = argmin ()\f + §d(x, )2>
X

for each x € X. In particular, if f = i¢ for a nonempty closed convex subset C' of
X, the resolvent operator Ry = R; is the mapping making x € X correspond to the
unique closest point y, € C to x. We call it a metric projection onto C' and denote it
by Pc.

Let {z,} be a bounded sequence in a metric space X. Define a function g: X —
[0, 00] by g(x) = limsup,,_, . d(xy,x) for z € X. The subset argminy g of X is called
the asymptotic center of {x,}. If X is a Hadamard space, the asymptotic center is a
singleton for every bounded sequence [3]. We say {z,} is A-convergent [7] to z¢p € X
if any subsequence {z,,} of {z,,} has a unique asymptotic center xy. In this case, we
call zy the A-limit of {x,}.

We know that any closed convex subset C' of a Hadamard space is A-closed in the
sense that any A-convergent sequence {x,} in C has its A-limit in C. Further, any
proper lower semincontinuous convex function f: X — |—00, 00] is A-lower semicon-
tinuous in the sense that

o) < limint f(x,)
holds for any sequence {x,,} C X which is A-convergent to zp € X.

Let {C,} be a sequence of nonempty closed convex subsets in a Hadamard space
X. We define two subsets d-Li,, C,, and A-Ls,, C,, of X as follows: x € d-Li,, C,, if
and only if there exists {z,,} C X such that x,, € C, for all n € N and d(z,,,x) — 0.
On the other hand, y € A-Ls,, C,, if and only if there exist a sequence {y;} C X and
a subsequence {n;} of N such that y; € C,,, for all i € N and the asymptotic center of
{yi} is {y}. We say that {C,,} converges to Cy in the sense of A-Mosco [4] if a subset



Cp of X satisfies that
Co= d-LiC, = A-LsC,,.

In this case, C is called a A-Mosco limit of {C, } and we denote it by AM-lim,, o, Cy,.
The following result shows the relation between a sequence of closed convex sets in
a Hadamard space and the corresponding sequence of metric projections onto them.

Theorem 2.1 (Kimura [4]). Let X be a Hadamard space and Cy a nonempty closed
convez subset of X. Then, for a sequence {Cy,} of nonempty closed convex subsets in
X, the following are equivalent:

(a) Co = AM-limy, 00 Cp;
(b) {Pc, x} converges to Poyx € X for every x € X.

As a simple and important example of A-Mosco convergence, the following fact is
mentioned in [4]: If {C),} is a nonempty closed convex subsets in X such that

CiDCyD---DC, DChe1 D

and (oo, Cx # @, then ,—; Cx, = AM-lim,,_,o C,,.

3  Main result

In this section, we prove our main result, for generating an approximation sequence
convergent to a solution to a convex minimization problem with a fixed point con-
straint of a nonexpansive mapping.

The following result will serve an essential part of the proof for the main theorem.

Theorem 3.1 (Kimura—Shindo [6]). Let X be a Hadamard space and let f,: X —
|—00, 00| be a proper lower semicontinuous convex function having a minimizer on
X forn € NU{oo}. Let {\,} C ]0,00] be an increasing sequence diverging to oo.
Suppose the following conditions:

(i) AM-lim,,_,, argminy f,, = argminy foo;
(ii) for anyb € X, there exists {b,} C X such thatb, — b andlimsup,, . fn(byn) <
foo(b);

(iii) for any subsequence { f,,} of {fn} and a A-convergent sequence {c¢;} C X whose
A-limit is ¢ € X, it holds that foo(c) < liminf, o fi,(c;).
Then,

for any u € X.

We also need the following lemma.



Lemma 3.2. Let f: X — |—00,00] be a proper function on a nonempty set X, and
C a nonempty subset of X such that argminy f NC # &. Then

argmin(f + i) = argmin f N C.
X X

Proof. Let w € argminy f N C. Since f is proper, we have

(f +ic)(w) = f(w) = inf f(y) < .

yeX

Using this fact, we show argmin y (f+ic) C argminy fNC. Let z € argminy (f +ic).
Then we have
(f+ic)(z) < (f+ic)(w) < oo.

It implies that ic(z) # oo and thus ic(z) = 0, or equivalently, z € C. Further, we
have

fw) < f(z) = (f +i0)(z) < (f +io)(w) = f(w),

which deduces f(w) = f(z). Hence z € argminy f, and thus argminy (f + i¢) C
argminy f N C.
For the opposite inclusion, let w € argminy f N C. Then, for all y € X, we have

(f +ic)(w) = f(w) < fy) < fly) +icly) = (f +ic)(y).

It implies that w € argminy (f + i¢), and hence argmin y (f + i¢) D argminy f N C,
the desired result. 0

We now show the main result of this work.

Theorem 3.3. Let X be a Hadamard space such that a subset {z € X | d(u,z) <
d(v,2)} is convez for all u,v € X. Let f: X — |—00,00] be a proper lower semi-
continuous convex function and T: X — X a nonexpansive mapping. Suppose that
S =argminy fNFixT # @&. Let {\,} C]0,00] be an increasing real sequence diverg-
ing to co. For u € X, generate a sequence {x,} C X as follows: z1 € X, f1 = f,
and

X, ={z€ X |dTxn,2) <d(zn,2)},
frn41 = fn +ix,,
Tnt1 = By f U
for each n € N. Then, {z,} converges to Psu.
Proof. We first notice that the sequence {z,} is well defined; since d(Tz,,z) <

d(zy, z) for every z € Fix T, we have

g#+SCFixTcCX,



for all n € N. It shows that every f, is proper. Moreover, since X,, is closed and
convex, its indicator function ¢y is lower semicontinuous and convex, and so is f,.
Therefore we can define the resolvent Ry, ¢, : X — X and thus {z,} is well defined.

Let Cp, = (p—y Xk for n € N, Coo = ooy Xk, and foo = f +ic... Then, we have

n
=h +Zixk =h+in_ x,=[f+ic,
k=1

for n € N. We show that {f,} and f. satisfy the conditions (i), (ii), and (iii) in
Theorem 3.1. For (i), it follows from Lemma 3.2 that

argmin f,+1 = argmin(f + i¢, ) = argmin f N C,,.
X X X

Since {argminy f N C,} is a decreasing sequence of subsets of X with respect to
inclusion, we have

AM-lim argmin f,, = AM-lim (a,rgmin fn Cn> = argmin f N Cy = argmin f,
which is the condition (i).

Next, we prove (ii). Fix b € X arbitrarily. If fo(b) = oo, then the inequality
limsup,,_, . fn(bn) < foo(b) obviously holds for any choice of {b,} with b, — b. If
foo(d) = (f +ic,)(b) < 0o, then we have foo(b) = f(b) < oo and b € Cw. It follows
that b € C), for every n € N, and thus we have

fnt1(b) = f(b) +ic, (b) = f(b)

for any n € N. Therefore, letting b, = b for every n € N, we obtain b, — b and
limsup,,_, o fn(bn) = f(b) = foo(b). Hence the condition (ii) holds.

For (iii), let { f,, } be a subsequence of { f,,} and {¢;} C X a A-convergent sequence
with its A-limit ¢ € X. If liminf, o fn,(¢;) = oo, then the inequality foo(c) <
liminf; o fn,(¢;) obviously holds. Therefore, we may assume liminf;_, . fp,(¢;) <
oo. Let {i;} be an increasing sequence of N such that fmj (ci;) € Rfor all j € N and
that

.hm f’l’Lz (Cij) - hminf fnz(cl) < 0.
j—o0 J 11— 00

Since fn, (ci;) = [fleiy) +iCnij71(Cij) < oo, we have fn, (ci;) = flci;) and ¢;; €
Ch;, -1 for all j € N. To show the A-limit ¢ of {e;} belongs to Coo = (Nrey X =
Nrey Ck, fix k € N arbitrarily. Then, there exists jo € N such that ni;,, —1 > k.
Since {C),} is decreasing with respect to inclusion, we have

Cij c an'j—l C Cnijo 1 CC
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for every j > jo. Since C} is a closed convex subset of X, it is A-closed. It implies
that ¢ € Ck. Since k is arbitrary, we obtain ¢ € (), Ckx = Cx. It follows that
foolc) = f(c) +ic(c) = f(c). Since f is lower semicontinuous and convex, it is
A-lower semicontinuous and it implies that

fOO(C) = f(C) < lim inff<cij) = lim inf fni- (Cij) = lim fni- (Cij) = hmlnf fnz‘ (cl)
J—00 J—o0 / J—roo 100
Thus the condition (iii) holds.
Now we apply Theorem 3.1 and obtain

nli_}n;O Ty = nli_)ngo Ry, f,u = Pargminy fo -
To conclude the proof, we show Pargmin,, fo.u = Psu. Let 20 = Pargmin, f.ou. Since
zo belongs to argminy fo, = argminy f N C, from the definition of Cy,, we have
2o € Cy, for every n € N. It follows that d(Tx,, z0) < d(z,, 29) for all n € N, and thus

0 <d(Tz0,20) <d(Tzp,Txn) + d(Txn,20) < d(20,2n) + d(Txy, 20) < 2d(xp, 20)-

Letting n — oo, we get d(T'zg,20) = 0, or equivalently, zy € FixT. Therefore, we
have zp € S. Since FixT C (;—; Xx = Co, we have S = argminy f N FixT C
argminy f N Cs and

d<207 u) = d(PargrninX foo Uy u) = d<PargminX fNC e Uy u) < d(Psu, u) < d(207 u)

It implies that d(zo,u) = d(Psu,u). By the uniqueness of the closest point to a
nonempty closed convex subset S of X, we obtain zyg = Psu, which is the desired
result. O

We note that the given point u in this theorem is called an anchor point of the
iterative sequence.

From this theorem, we can deduce some known results of approximation methods
to solve a convex minimization problem with no constraint and a fixed point problem.

The following result generates an approximation sequence of a minimizer of a given
function f. Also, it can be regarded as a discrete version of the asymptotic behavior
of a resolvent Ry as A — oo.

Corollary 3.4 (Kimura—Shindo [6]). Let X be a Hadamard space, f: X — |—00, 0] a
proper lower semicontinuous convez function having a minimizer on X. Let {\,} C
10, 00[ be an increasing real sequence diverging to co. Then {Ry, fu} converges to
Pargmin, fu for each u € X.

Proof. Suppose that a mapping T is the identity mapping on X. Applying Theo-
rem 3.3, we obtain the desired result. O

The following approximation technique is known as the shrinking projection method
for a nonexpansive mapping, originally proved by Takahashi, Takeuchi, and Kubota [8]
in the setting of a Hilbert space.



Corollary 3.5 (Kimura [4]). Let X be a Hadamard space such that a subset {z €
X | d(u,z) < d(v,z)} is convex for all u,v € X. Let T: X — X be a nonexpansive
mapping such that FixT # @&. For u € X, generate an iterative sequence {x,} as
follows: x1 € X, Cy =X, and

X, ={z€ X |d(Tzn,2) < d(x,,2)},
Cn_|_1 - Cn N Xn7

LTn+l = PCn+1u
for alln € N. Then {x,} converges to Prix7u € X.

Proof. Define f: X — |—o0, 00| by f(x) = 0 for all z € X. Applying Theorem 3.3,
we obtain the desired result. O
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