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Abstract

In Bayesian Markov decision model, the transition law of process is expressed as matrices in which
each element is interval and estimated from the observation of pair of state-action transitions. In this
report, we consider an optimization problems of fractional programming and show an algorithm of
solving the equations in order to have the interval estimated transition matrices in Bayesian Markov
decision model.

1 Introducution

Markov decision model consists of four tuple {S, A,Q,r}. S :={1,2,...,n} denotes finite state space

and A := {ay,as,...,a;} denotes finite action space. We define the followings:
P(S) :={p= (p1,p2,...,pn) ER}|Y pi =1}, (1)
i€S
P(S|S) :={q=(qij:1,j€8) € Rixn| Z%‘j =1@Ge€9}, (2)
JES
P(S|S x A) :={Q = (gij(a) : i,j € S,ac A) € Rinxn|qi.(a) € P(s) (i€ S,ae A}, (3)

where R’ is the set of nonnegative n dimensional real vectors and and RT™" is the set of (m,n)
nonnegative real matrices. @ = (¢;j(a)) € P(S|S x A) denotes transition laws, r = (r(i,a)) € B4 (S x A)
denotes reward function, where B (D) is the set of nonnegative real valued functions on D. In our
decision model, we consider an MDPs with unkown transition laws of matrices @ = (g;;(a)) (i,7 € S,a €
A) (Uncertain MDPs) and each estimated transition law has an element of interval s.t. [Bij (a),p;;(a)].

We consider a Markov decision process whose true transition matrices are denoted by P = (p;;(a)),
i,7 € S,a € A, where S denotes finite state space and A denotes finite action space. For each ith row
of transition matrices, the data set of obserbations are denoted by

Ui(a) = (O'il(a)vo'iQ(aJ)v s ,ain(a)) ac A7

and set 6;(a) = >, 0ij(a),a € A.

For ith distribution of true transition matrices p;(a) = (pi1(a), pia(a),...,pin(a)),a € A, the distri-
bution of ¢;(a) is expressed as multinomial s.t.
Gir! i1, 042 Tin

Pi1 Pi2” " Pin s
n

floi,0i2,...,0m) = —
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where o;;(a) and pfﬁ"(a)(a) are denoted by o;; and p;i", respectively. Therefore, from the prior infor-

mation of the observed date set &;,¢ € S, we treat Dirichlet distribution of unknown parameters (p;;(a))
in order to have estimated interval matrices of true transition matrices (p;;(a)) € P(a),a € A.



For the simplicity, we treat deterministic and stationary MDPs since in this report we focus on an
algorithms to have solutions of equations which gives interval estimated MDPs from the date set of
observations. Hence, from now on, we denote by P = (p;;) an estimated transition matrices under a
fixed deterministic stationary policy.

Let the map f : S — A and denote by F' the set of all maps f. For any f € F, the expected
discounted reward function is denoted by ¢(f|Q) € R’} and defined as follows for the discount factor
B (0 < 8 < 1) with transition matrices @ € P(S|S x A) :

B(f1Q) =D _(BRUN)(f), (4)

t=0

where 7(f) = (r(1, f(1)),7(2, f(2)),...,r(n, f(n))) € R, Q(f) = (4:;(f(2))) € P(5]9).

In practical decision problem, we must estimate the true transition @ from the data set of state-
action observation of transitions in the system. It is called controlled Markov set-chain (cf. [10]) if the
transition matrices are given by the set of interval matrices. In this report we consider how to estimate
those interval matrices from the data set of observations.

We assume the process start some fixed initial state ¢ and estimate transition law {p;};cs from the
date set of prior information.

Let P, := P(S) = {p = (p1,p2,----pn)|pi = 0,2, p; = 1}. We denote by B the set of all Borel
measurable set of R”. Let us denote by L < B if there exist two measure L and U on B which satisfy
L(A) SU(A) for any A € B. Here and subsequently, for such two measures L < U, we denote by [L, U]
and call them prior interval measure. We also call L lower measure and U upper measure to [L,U]. In
addition, throughout the paper we assume upper measure U satisfy U(-) = kL(-) for fixed real value
k(k = 1). That is, U is assumed proportional measure of L and prior interval measure is denoted by
[L, kL] = [dp, k dp].

For fixed initial state k € S, we execute trials independently and repeatedly by & times and observe
the transitions from fixed state k to each state 7 and record the number o; of transitions to i. Then
we have the date set ¢ = (01,09,...,0,), where 6 = Zzzl ok. Let p; the transition probability from
fixed initial state k € S to ¢ € S. For 6 and parameter p = (p1,p2,...,pn) the distribution of & is
multinomial and represented as follows

(o1 4+ +opn)!

01 0’2'_' On
0'1!---O'n! pl p2 pn . (5)

f(017027"'70n|p) =
By applying the result of method of interval Bayesian estimation by DeRobertis/Hartigan[1] to
prior interval [L, kL], we have posterior interval measures [L,,U,| := [L,, kL] which is expressed by

multidimensional beta function and the posterior interval measure [);, \;] (for simplicity, we denote it

by[A, A]) is constructed as intervals of integral proportions by posterior interval measures Q € [L,, kL]

such as
fpn sz(dp)
[p. Q(dp)

Moreover, each value of end points of interval [\, \] is unique solution of equations:

mgng}. (6)

Uo’(pi - A)_ + La(pi - A)+ =Y, (7)
Us(pi =X + Lo(pi =A)” =0 (8)
where z7 = max{0,z},2~ =z — 27 = min{0, z}.

2 Dirichlet integral and the solutions of estimated parameters

We can rewrite above equations (7) and (8) as the form of Dirichlet integrals below from the assumption
U, = kL, and by multidimensional beta function(Dirichlet function):



(lower bound \):

O R R l (N TPV (9)

0<p; <\, pEP, A<p;<1,peP,
(upper bound \):

k /.../ (pl_A)pgl..pzndp_F /.../ (pl_)\)pgl...pz"dpzo (10)

A<p;<1,pEP, 0<p;<A\,pEP,

Gamma function I'(xz) (z > 0) and beta function B(z,y) (x,y > 0), Incomplete beta function

B(z,y|A\) (z,y > 0,0 < A £ 1) are defined as follows: T'(z) = / t"le7tdt (x > 0),B(x,y) =

0
1 A

"Y1 —t)¥tdt (z,y>0),B(z,yl\) = / 7M1=ttt (w,y > 0,0 A< 1),

0 0
We will denote Dirichlet integral by D(v1,va, ..., vk Vg+1) and D(vy,ve, ... Vg V1 |A) (B2 1,0 S
A £ 1) which are defined as follows:
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where Sg, = {(x1,...,2%) : 2; 20,0 = 1,...,k,2f:1xi <1}
By the relations of Dirichlet integrals and beta functions we have

D(vy,v, ..., vk k41) = B(vi,va + -+ vp1)D(vo, v3, . oo Uk Vig1) (11)
D(vy,va, .. Vi V1| A) = B(vr,va + - - + Vi1 | N)D(va, V3, o oo Vi Vi1)- (12)

Then, we can show that the solutions of the equations (7) and (8) are solutions A of polynomial
equations (13) and (14) in the followings:

K(s,8,)\) i= <S i - — >\> B(s,t)+ (k — 1) (B(s + 1,t]A) — AB(s,t|]\)) = 0, (13)

G(sit,\) == k (S i - > B(s,t) — (k — 1) (B(s + 1,]\) — AB(s,|]\)) = 0, (14)

where 6 = Y' | 05,8 =01+ 1,6t =6 — 01 + n — 1. The above equations (13) and (14) have the same
dimension (s +t = 6 + n)of polynomials respectively. We have the following.

Theorem 1. For a parameter p = (p1,p2,--.,Pn), each p; of posterior interval measure |\, X] is given
by the unique solutions of the following polynomial equations.

K(&u&) = B(S+15t)_AB(Sat)+(k_1) (B(S+17t7>‘)_ ( 13 A)) (15)
G(s,t,A) :== k(B(s+ 1,t) = AB(s,t)) — (k — 1) (B(s + 1,t,\) — AB(s, t, )) (16)
where s =0;+1 andt =6 —o; +n — 1.

It can be shown that [7] the functions K(s,t,\) and G(s,t, \) are concave and convex in A and have
the unique solutions A and A in the closed interval [0, 1] respectively.



It is noted that incomplete beta function B(m,n,\) can be rewritten by polynomial as the following:
n—1
n—1 ; o1
B(m,n,\) = D D i ——
=3 (" )i
In order to have the solution A\, we apply the Newton-Raphson algorithm([7]) as follows:
Algorithm A:
Step 1. Set n := 0 and specify € > 0. Select A(0 < A < 1) such that K(s,t,A) < 0. Set x,, := A.

K(s,t, 1,
2. Let W(s,t,a,) = % Compute xp11 := x, — W(s,t,2p).
3. If |2pt1 — xn| <e, set A, := x,4q and stop. Otherwise increase n by 1 and go back to
Step 2,
where
Wistm,) = (55 —za)B(s: ) + (k= 1)(555 — n)B(s, t,2p) — %xi(l —x,)t an
T B(s,t) + (k—1)B(s,t,z,) '
Let f be a differentiable function and ¢(x) = z — ;/((Zi . The recursive formula of Newton-Raphson
method =41 = ), — ;/ii")) gives approximate sequence of the root A which satisfies f(\) = 0. It is

also known that a fixed point A of ¢(A) = A is also solution of the equation f(\) =0 if f/(\) # 0.
For a differentiable function K, we have the followong:

Proposition 1.

K(s,t,\) = AK'(s,t,\) — K'(s + 1,t,\) (18)
K(s,t,\) K'(s+1,t,A)
K'(s,t,\) A K'(s,t,\) (19)

From the above proposition, we have a fractional programming problem related to finding the fixed
point of ¢ defined by

K'(s+1,t,A)
) 2
60 = S (20)
and convergent sequence to fixed point A is defined by
B _ K'(s+1,t,x,) B(s+1,t)+ (k—1)B(s+1,t,1,)
T =0n) = o ey T B+ (h—1BGLa) (21
For the first derivative of ¢(\), it is easily shown that
—(k—1)As7L(1 — Nt
A (22)

K'(s,t, )
Let ¢(\) = K'(s + 1,¢,A\)/K'(s,t,A) on A € [0,1]. We have the followings.
B(s+1,t)

B(s,t)

(i) The solutions \ for equation ¢'(A) = 0 are A = 0,1 and fized point of ¢(\) = A, i.e., the fixed
point X is solution of equation (15) K(s,t,\) = 0.

Proposition 2. (i) ¢(0) = ¢(1) =

(iii) The function ¢(X) is monotone decreasing in 0 < A < « and monotone increasing in o < A < 1.



We can define the optimization problems as follows.

K’ 1
Fractional programming problem: (P) minygo 1 %,
Parametric problem: (P,) F(q) = minyejo1](K'(s + 1,t, ) — ¢K'(s,t,A)).

Then,
K'(s+1,t,\)  K'(s+1,t,})
K'(s,t,\)  K'(s,t,))

(2) F(q) is strictly monotone decreasing and concave in q.

Proposition 3. (1) ¢()) = miny¢po, 1 =

(3) A is unique solution to equation F(q) =0 q € [0,1].
By the proposition 3, we have a property of relation between a solution of polynomial K (s,¢,A) =0
and fractional programing (P).
Corollary 1. F(A\) = K'(a+ 1,b,A) — AK'(a,b,A) = —K(a,b,\) =0

It can be shown similarly that the solution of the equation (16) G(s,t,A) = 0 is characterised as the
optimal value of fractional programming.

3 An approach by Dinkelbach algorithm

In this section, we summarise an approach to find the solutions );; and Xij fori,7 € S of K =0 and
G = 0 by applying Dinkelbach algorithm (cf. Stancu-Minasian 1997[17] ).
Let X C R and f,g: X — R. We define optimization problems as follows.

Primary problem (P)

max q(z) = @,x € X,

g(x)
where g(z) >0, , x € X and f(z) 2 0 at least one x € X.
Parametric problem Q(\)
max f(z) — Ag(x),z € X.

Let T is optimal solution to the primal (P) and assume X satisfy the condition X = ( ) Then, it

9(@)

HI

is known that the following theorem follows (e.g. [17]).

Theorem 2. (i) F'(\) > 0 if and only if A < X (i) F(\) = 0 if and only if X = X. (iii) F(\) < 0 if
and only if A > .

Proof. (i) (“only if” part) If F'(A) > 0, 32’ € X s.t. f'(z) — Ag(z’) > 0. Since we assume g(z) > 0 so
that we have 4— > X\. Then, A < X follows. (“if” part) If A < A, 32" € X s.t. X\ = ﬁi:—:g > A. Hence,
we have f(z' ) )\g( 'Y= F(X) > 0. (ii), (iii) can be shown analogously.m

We have the following.

Corollary 2. If F(\) = 0, the optimal solution &’ to Parametric problem Q(\) satisfies f(z')—Ag(z') =
F(X\) = 0. Moreover, since gE g =\, 2’ is also optimal solution to Primly problem (P).

Now by applying Newton-Raphson method to the function F(\) we have the following argorithm
(cf. [17]).

Dinkelbach Algorithm
Step 1 Take A = \; such that F()\;) = 0.

Step 2 Solve problem Q(\). If |F(A\)] < 4, stop. Otherwise, go to Step 3.

Step 3 Let A = (@) where z* is an optimal solution of problem Q()\) obtained in Step 2.

q(w*)’

Repeat Step 2.



4 Numerical example

Let [L,kL] (k = 1) be prior interval measure and set s = 0;; + 1 and t = 6; — ;5 + n — 1 where & is
observed data set for fixed initial state ¢ € S and transition state j € S from i. For each ¢;;(a),a € A
of true transition matrix Q(a) = (¢i;(a)),a € A, g;j(a) is estimated as the interval [A;;(a), Ai;(a)] by
applying Bayesian interval method with observation data set & = 6(i,a) = (01,02,...,0,) for each
i€ Sandac A

For simplicity, we fixed initial state 4 and a € A in order to show our estimating algorithm works to
each true transition law ¢;(a) = (g;;(a)) € R™.

In this section we show the numerical example related to estimated upper values Xij. For parametric
problem Q(\), let

F(A\) = (kB(s+1,t) — (k—1)B(s + 1,t,z) — A (kB(s,t) — (k — 1)B(s,t,)) .

If we set parameters as k = 2,s =0,; + 1 =11t +1 =6, — 0;; + n = 5+ 1, F()\) have the form as
follows:
F(\) = (2B(12,5) — B(12,5,z)) — A(2B(10,5) — B(10,5, x)).

Applying our algorithm (Algorithm A) as mentioned in preceding section, we have a solution
Xij = 0.71826. On the other hand, by applying Dinkelbach algorithm above, we have the sequences
{A0, M1, A2, ...} in the following.

Ao = 0.7 — Ay = 0.7007, — Ao = 0.71790, — A3 = 0.720102. It is noted that A3 > Xij is shown
by F()\3) < 0.

Here is another example, if we set initial value Ag = 0.6, then Ay = 0.6 — A\; = 0.60454, —
A2 = 0.70769, — A3 = 0.70777, — A4 = 0.718131, — X5 = 0.718978. We know that A5 > \;; from
F(Xs) <.
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Figure 1: Trajectory of F(A) = f(z) — Ag(x) with fixed A = 0.5 and = € [0, 1]. Solution z’ of parametric
problem Q(A) = Q(0.5) gives maximal point of F(\).

0.000013
0.000012 f
0.000011 f
0.000010f
9.x1076f
8.x1076f

7.x1076f

0.2 0.4 0.6 0.8 1.0

Figure 2: Trajectory of F'(\) = f(z) — Ag(x) with fixed A = 0.6 and z € [0,1].
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Figure 3: Trajectory of F(A\) = f(z) — Ag(z) with fixed A = 0.7 and z € [0, 1].
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Figure 4: Trajectory of F(A\) = f(z) — Ag(x) with fixed A = 0.71826 and z € [0, 1]. Solution 2’ = 0.71826
gives maximal point of F'(A\) and satisfying F'(A) = 0.

Figure 1 to 3 show trajectories of Function F(A) for each A = 0.5,0.6,0.7. Figure 4 shows trajectories
of F(X\) with the optimal value of fractional programming (P) and the optimal value A = A\ = 0.71826 is
characterised as the solution of the equation G(\) = 0 which is estimated upper bound of true transition

matrix ¢;;(a).
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